精英家教网 > 高中数学 > 题目详情
19.已知点A(-1.0),B(1,0),若圆 (x-2)2+y2=r2上存在点P.使得∠APB=90°,则实数r的取值范围为(  )
A.(1,3)B.[1,3]C.(1,2]D.[2,3]

分析 由题意可得两圆相交,而以AB为直径的圆的方程为x2+y2=1,圆心距为2,由两圆相交的性质可得|r-1|<2<|r+1|,由此求得r的范围.

解答 解:根据直径对的圆周角为90°,结合题意可得以AB为直径的圆和圆 (x-2)2+y2=r2有交点,
检验两圆相切时不满足条件,故两圆相交.
而以AB为直径的圆的方程为x2+y2=1,圆心距为2,
故|r-1|<2<|r+1|,求得1<r<3,
故选:A.

点评 本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图4,已知四棱锥P-ABCD,底面ABCD是正方形,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM,AN,MN.
(1)若PA=AB,求证:AN⊥平面PBC.
(2)若MN=5,AD=3,求二面角N-AM-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程①x2-y2=1;②y=x2-|x|;③y=3sinx+4cosx;④|x|+1=$\sqrt{4-{y}^{2}}$;⑤$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1对应的曲线中存在“自公切线”的有②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F为抛物线y2=4x的焦点,过点F引一条直线与抛物线交于A、B两点,与抛物线准线交于D点.
(Ⅰ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;
(Ⅱ)在抛物线上是否存在一点M,使直线MA,MD,MB的斜率成等差数列,若存在,求出M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知 (1-2i)z=5(i为虚数单位),则复数z在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系 xOy中,过点 P(-1,-2)的直线l的参数方程为 $\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρsinθtanθ=2a(a>0),直线 l与曲线C相交于不同的两点M.N
(I)求曲线C和直线 l的普通方程;
(Ⅱ)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知an+1=2an+3(n∈N*),且a1=1,Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)求S20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1,k2,k,若k1k2>k恒成立,则离心率e的取值范围为(  )
A.1<e<$\sqrt{2}$B.1<e≤$\sqrt{2}$C.e>$\sqrt{2}$D.e≥$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角α的终边在函数y=-|x|的图象上,则cosα的值为(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$±\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案