精英家教网 > 高中数学 > 题目详情
如图,点A、B是单位圆O上的两点,点C是圆O与x轴的正半轴的交点,将锐角α的终边OA按逆时针方向旋转
π
3
到OB.
(1)若点A的坐标为(
3
5
4
5
),求
1+sin2α
1+cos2α
的值;
(2)用α表示|BC|,并求|BC|的取值范围.
考点:任意角的三角函数的定义,同角三角函数基本关系的运用,余弦定理
专题:三角函数的求值
分析:(1)由已知利用任意角的三角函数的定义可得,cosα 和sinα 的值,再利用二倍角公式求得sin2α 和 cos2α的值,可得
1+sin2α
1+cos2α
的值.
(2)由题意可得,|OC|=|OB|=1,∠COB=α+
π
3
,由余弦定理可得|BC|2 的解析式.根据α∈(0,
π
2
),利用余弦函数的定义域有和值域求得|BC|的范围.
解答: 解:(1)由已知可得,cosα=
3
5
,sinα=
4
5

∴sin2α=2sinαcosα=
24
25
,cos2α=2cos2α-1=-
7
25
1+sin2α
1+cos2α
=
1+
24
25
1+(-
7
25
)
=
49
18

(2)由题意可得,|OC|=|OB|=1,∠COB=α+
π
3
,由余弦定理可得
|BC|2=|OC|2+|OB|2-2|OB||OC|cos∠COB=1+1-2cos(α+
π
3
)=2-2cos(α+
π
3
).
∵α∈(0,
π
2
),∴α+
π
3
∈(
π
3
6
),∴cos(α+
π
3
)∈(-
3
2
1
2
),
∴|BC|2∈(1,2+
3
),
∴|BC|∈(1,
6
+
2
2
).
点评:本题主要考查任意角的三角函数的定义、同角三角函数的基本关系、余弦定理、二倍角公式、余弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知空间直线l不在平面α内,则“直线l上有两个点到平面α的距离相等”是“l∥α”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
e2x+mex,    x∈[-ln2,0]
lnx,x∈(0,+∞)
(e为自然对数的底数),g(x)=
1
2
ax2+bx.
(Ⅰ)若a=-2时,函数h(x)=f(x)-g(x)在(0,+∞)内是增函数,求b的取值范围;
(Ⅱ)当x∈[-ln2,0]时,求函数f(x)的最小值;
(Ⅲ)当x>0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程7x2-8x+1=0的两个根,试求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂有工人1000人,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)A类工人和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表1
生产能力分组 [100,110) [110,120) [120,130) [130,140) [140,150)
人数 4 8 x 5 3
表2
生产能力分组 [110,120) [120,130) [130,140) [140,150)
人数 6 y 36 18
①求x,y,再完成下列频率分布直方图;

②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=-an-(
1
2
)n-1
+2(n∈N*),数列{bn}满足bn=2nan
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设数列{
n+1
n
an}的前n项和为Tn,证明:n∈N*且n≥3时,Tn
5n
2n+1

(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心C(3,1),被x轴截得的弦长为4
2

(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且CA⊥CB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x+
3
x-2
(x>2)的最小值以及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-
1
x2
n(n∈N*,n>1)的展开式中x-4的系数为an,则
lim
n→∞
1
a2
+
1
a3
+…+
1
an
)=
 

查看答案和解析>>

同步练习册答案