精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=$\left\{\begin{array}{l}{-{x}^{\frac{1}{3},x≤-1}}\\{x+\frac{2}{x}-7,x>-1}\end{array}\right.$则f[f(-8)]=(  )
A.4B.-4C.2D.-2

分析 利用分段函数由已知先求出f(-8),由此能求出f[f(-8)].

解答 解:∵f(x)=$\left\{\begin{array}{l}{-{x}^{\frac{1}{3},x≤-1}}\\{x+\frac{2}{x}-7,x>-1}\end{array}\right.$,
∴f(-8)=-(-8)${\;}^{\frac{1}{3}}$=2,
f[f(-8)]=2+$\frac{2}{2}$-7=-4.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在数列{an}中.a1=2,an+1=2an-n+1,n∈N*
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),且bn=ancos$\frac{2nπ}{3}$,记Sn为数列{bn}的前n项和,则S120=7280.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2sin(2x+$\frac{π}{6}$)的图象(  )
A.关于直线x=$\frac{π}{6}$对称B.关于直线x=-$\frac{π}{12}$对称
C.关于点($\frac{2π}{3}$,0)对称D.关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:
时间周一周二周三周四周五
车流量x(万辆)100102108114116
PM2.5的浓度y(微克/立方米)7880848890
(Ⅰ)根据上表数据,用最小二乘法,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$•x+$\widehat{a}$;
(Ⅱ)若周六同一时间段车流量200万辆,试根据(Ⅰ)求出的线性回归方程,预测此时PM2.5的浓度为多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$;参考数据:$\sum_{i=1}^{5}$xi=540,$\sum_{i=1}^{5}$yi=420)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2+4x+3≥0},B={x|2x<1},则A∩B=(  )
A.[-3,-1]B.(-∞,-3]∪[-1,0)C.(-∞,-3)∪(-1,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=x3+x的零点依次为a,b,c,则a,b,c由小到大的顺序是  )
A.a<b<cB.a<c<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的方程|x2-4x+3|-a=x至少有三个不相等的实数根,则实数a的取值范围是[-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简:
(1)$\frac{\sqrt{1+2sin280°•cos440°}}{sin260°+cos800°}$.
(2)$\frac{1}{{tan}^{2}(-α)}$+$\frac{1}{sin(\frac{π}{2}-α)•cos(α-\frac{3}{2}π)•tan(π+α)}$.

查看答案和解析>>

同步练习册答案