精英家教网 > 高中数学 > 题目详情
13.关于x的方程|x2-4x+3|-a=x至少有三个不相等的实数根,则实数a的取值范围是[-1,-$\frac{3}{4}$].

分析 根据方程与函数之间的关系,利用参数分离法进行转化,利用数形结合进行求解即可.

解答 解:由|x2-4x+3|-a=x得|x2-4x+3|-x=a,
设f(x)=|x2-4x+3|-x,
由x2-4x+3≥0得x≥3或x≤1时,f(x)=x2-4x+3-x=x2-5x+3,
当1<x<3时,f(x)=-(x2-4x+3)-x=-x2+3x-3=-(x-$\frac{3}{2}$)2-$\frac{3}{4}$,
作出函数f(x)的图象如图:
当x=1时,y=-1,
则要使方程|x2-4x+3|-a=x至少有三个不相等的实数根,
则满足a∈[-1,-$\frac{3}{4}$],
故答案为:[-1,-$\frac{3}{4}$].

点评 本题主要考查函数与方程的应用,利用参数分离法,利用构造函数法,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.写出如图阴影部分的角的集合为{α|-150°+k•360°≤α≤150°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}{-{x}^{\frac{1}{3},x≤-1}}\\{x+\frac{2}{x}-7,x>-1}\end{array}\right.$则f[f(-8)]=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点P(cosα,sinα)在直线y=-2x上,则$cos(2α+\frac{π}{2})$的值等于(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y是实数,则“$\left\{\begin{array}{l}{x>1}\\{y>1}\end{array}\right.$”是$\left\{\begin{array}{l}{x+y>2}\\{xy>1}\end{array}\right.$的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△AOB中,$\overrightarrow{OA}=(2cosα,2sinα),\overrightarrow{OB}=(5sinβ,5cosβ),\overrightarrow{OA}•\overrightarrow{OB}=-5$,则△AOB的面积为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{5\sqrt{3}}}{2}$D.$5\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}前数列n项和Sn,已知${S_n}+{a_n}+n=0(n∈{N^*})$恒成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.
(Ⅲ)若关于x的不等式${x^2}+\frac{1}{2}x-1≥{a_n}$对任意n∈N*在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简与求值:(不用计算器)
(1)cos18°cos42°-sin18°sin42°;(2)cos80°sin70°+cos10°sin20°
(3)cos20°cos(α-20°)-cos70°sin(α-20°)(4)cos215°-cos275°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正数数列{xn}满足x1=$\frac{1}{2}$,xn+1=$\frac{1}{1+{x}_{n}}$,n∈N*
(1)求x2,x4,x6
(2)猜想数列{x2n}的单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案