| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
分析 根据点P在直线上,得到tanα,利用万能公式和诱导公式化简得出答案.
解答 解:∵点P(cosα,sinα)在直线y=-2x上,
∴sinα=-2cosα,
又sin2α+cos2α=1,
解得:$\left\{\begin{array}{l}{sinα=-\frac{2\sqrt{5}}{5}}\\{cosα=\frac{\sqrt{5}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{sinα=\frac{2\sqrt{5}}{5}}\\{cosα=-\frac{\sqrt{5}}{5}}\end{array}\right.$,
∴$cos(2α+\frac{π}{2})$=-sin2α=-2sinαcosα=(-2)×$\frac{\sqrt{5}}{5}$×(-$\frac{2\sqrt{5}}{5}$)=$\frac{4}{5}$.
故选:B.
点评 本题考查了诱导公式的应用,同角三角函数的关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于直线x=$\frac{π}{6}$对称 | B. | 关于直线x=-$\frac{π}{12}$对称 | ||
| C. | 关于点($\frac{2π}{3}$,0)对称 | D. | 关于点(π,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,-1] | B. | (-∞,-3]∪[-1,0) | C. | (-∞,-3)∪(-1,0] | D. | (-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3≤x<0} | B. | {x|-3<x<-2} | C. | {x|-2≤x<0} | D. | {x|x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 9 | C. | 5 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com