分析 令t=sinx+cosx,由和差角的三角函数公式可得t∈[-$\sqrt{2}$,$\sqrt{2}$],换元可得y=(t+$\frac{1}{2}$)2+$\frac{3}{4}$,由二次函数区间的最值可得.
解答 解:令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
平方可得t2=1+2sinxcosx,则2sinxcosx=t2-1,
换元可得y=2+t2-1+t=t2+t+1=(t+$\frac{1}{2}$)2+$\frac{3}{4}$,
由二次函数可知当t=-$\frac{1}{2}$时,函数取最小值$\frac{3}{4}$,
当t=$\sqrt{2}$时,函数取最大值3+$\sqrt{2}$.
点评 本题考查三角函数恒等变换,涉及换元法和二次函数区间的最值,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {-1,0,1} | C. | {-2,-1,1,2} | D. | {-1,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com