精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,已知an+1=2an,且a1=1,则数列{an}的前五项的和等于(  )
A.-25B.25C.-31D.31

分析 利用等比数列的前n项和公式即可得出.

解答 解:∵an+1=2an,且a1=1,
∴数列{an}为等比数列,公比为2.
∴数列{an}的前五项的和=$\frac{{2}^{5}-1}{2-1}$=31.
故选:D.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=x3+x的零点依次为a,b,c,则a,b,c由小到大的顺序是  )
A.a<b<cB.a<c<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,若△EFG是以G为顶点,EF为底边且长为4的等腰直角三角形,则f(100)=(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简:
(1)$\frac{\sqrt{1+2sin280°•cos440°}}{sin260°+cos800°}$.
(2)$\frac{1}{{tan}^{2}(-α)}$+$\frac{1}{sin(\frac{π}{2}-α)•cos(α-\frac{3}{2}π)•tan(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,D是BC的中点,若$\overrightarrow{AD}=λ(\overrightarrow{AB}+\overrightarrow{AC})$,则λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=2+2sinxcosx+sinx+cosx的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求圆心在l1上且与直线l2相切于点P的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在(1-2x)9展开式中,第6项是-4032x5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知5,3分别为递减的等差数列{an}中的相邻两项,且数列{an}的前8项和为32,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前20项和Sn的大小为$\frac{20}{319}$.

查看答案和解析>>

同步练习册答案