用数学归纳法证明“1+
+
+…+
<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( )
A.2k﹣1 B.2k﹣1 C.2k D.2k+1
科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.2剩余类及其运算练习卷(解析版) 题型:填空题
电子计算机中使用二进制,它与十进制的换算关系如下表:
十进制 | 1 | 2 | 3 | 4 | 5 | 6 | … |
二进制 | 1 | 10 | 11 | 100 | 101 | 110 | … |
观察二进制1位数,2位数,3位数时,对应的十进制的数如上表,当二进制为6位数时能表示十进制数中最大的数是 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:填空题
(2013•宝山区一模)我们用记号“|”表示两个正整数间的整除关系,如3|12表示3整除12.试类比课本中不等关系的基本性质,写出整除关系的两个性质.① ;② .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:解答题
已知数列{an}的各项都是正数,且满足:
.
(1)求a1,a2;
(2)证明an<an+1<2,n∈N.
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:填空题
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n﹣1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
已知n为正偶数,用数学归纳法证明1﹣
+
﹣
+…+
=2(
+…+
)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )
A.n=k+1时等式成立 B.n=k+2时等式成立
C.n=2k+2时等式成立 D.n=2(k+2)时等式成立
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
证明1+![]()
![]()
+…+![]()
(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是( )
A.1项 B.k﹣1项 C.k项 D.2k项
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:填空题
(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+b2﹣c=0且使|2a+b|最大时,
+
+
的最小值为 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题
用反证法证明“方程ax2+bx+c=0(a≠0)至多有两个解”的假设中,正确的是( )
A.至多有一个解 B.有且只有两个解
C.至少有三个解 D.至少有两个解
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com