精英家教网 > 高中数学 > 题目详情

已知n为正偶数,用数学归纳法证明1﹣++…+=2(+…+)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )

A.n=k+1时等式成立 B.n=k+2时等式成立

C.n=2k+2时等式成立 D.n=2(k+2)时等式成立

 

B

【解析】

试题分析:首先分析题目因为n为正偶数,用数学归纳法证明的时候,若已假设n=k(k≥2,k为偶数)时命题为真时,因为n取偶数,则n=k+1代入无意义,故还需要证明n=k+2成立.

【解析】
若已假设n=k(k≥2,k为偶数)时命题为真,因为n只能取偶数,所以还需要证明n=k+2成立.

故选B.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.1同余练习卷(解析版) 题型:填空题

(2013•永州一模)若两整数a,b除以同一个整数m,所得余数相同,则称a,b对模m同余.即当a,b,m∈z时,若=k(k∈z,k≠0),则称a、b对模m同余,用符号a=b(modm)表示.

(1)若6=b(mod2)且0<b<6,则b的所有可能取值为 ;

(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m﹣1项的和为60(m﹣1)时,则m= .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

下列各数转化后为十进制偶数的是( )

A.75(8) B.211(6) C.1001(4) D.111100(2)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:解答题

(2011•河池模拟)已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设数列{}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn>

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:选择题

用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( )

A.2k﹣1 B.2k﹣1 C.2k D.2k+1

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立.

A.n=k+1 B.n=k+2 C.n=2k+2 D.n=2(k+2)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

(2012•绵阳二模)已知数列{an},{bn}满足a1=,an+bn=1,bn+1=,则b2011=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题

(2013•湖北一模)已知a,b,c∈R,则2a2+3b2+6c2=1是a+b+c∈[﹣1,1]的( )

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个偶数时,下列假设正确的是( )

A.假设a、b、c都是偶数

B.假设a、b、c都不是偶数

C.假设a、b、c至多有一个偶数

D.假设a、b、c至多有两个偶数

 

查看答案和解析>>

同步练习册答案