精英家教网 > 高中数学 > 题目详情

已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立.

A.n=k+1 B.n=k+2 C.n=2k+2 D.n=2(k+2)

 

B

【解析】

试题分析:直接利用数学归纳法的证明方法,判断选项即可.

【解析】
由数学归纳法的证明步骤可知,假设n=k(k≥2)为偶数)时命题为真,

则还需要用归纳假设再证n=k+2,

不是n=k+1,因为n是偶数,k+1是奇数,

故选B.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.1同余练习卷(解析版) 题型:选择题

(2012•贵溪市模拟)设a、b、β为整数(β>0),若a和b被β除得的余数相同,则称a和b对β同余,记为a=b(modβ),已知a=1+C+C•2+C•22+…+C•219,b=a(mod10),则b的值可以是( )

A.2010 B.2011 C.2012 D.2009

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

五进制数444(5)转化为八进制数是( )

A.194(8) B.233(8) C.471(8) D.174(8)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:选择题

用数学归纳法证明:(n∈N*)时第一步需要证明( )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

已知n为正偶数,用数学归纳法证明1﹣++…+=2(+…+)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )

A.n=k+1时等式成立 B.n=k+2时等式成立

C.n=2k+2时等式成立 D.n=2(k+2)时等式成立

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得( )

A.当n=6时,该命题不成立 B.当n=6时,该命题成立

C.当n=4时,该命题不成立 D.当n=4时,该命题成立

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•黄浦区一模)设向量=(a,b),=(m,n),其中a,b,m,n∈R,由不等式||•||恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当,即an=bm时等号成立),己知x,y∈R+,若恒成立,利用柯西不等式可求得实数k的取值范围是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:填空题

要证明“”可选择的方法有以下几种,其中最合理的是 .(填序号).①反证法,②分析法,③综合法.

 

查看答案和解析>>

同步练习册答案