精英家教网 > 高中数学 > 题目详情
17.如图是一次摄影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是1.

分析 根据讨论x>4时,求出平均分不是91分,显然x≤4,表示出平均分,得到关于x的方程,解出即可.

解答 解:若x>4,去掉一个最高分(90+x)和一个最低分86后,
平均分为$\frac{1}{5}$(89+91+92+92+94)=91.6分,不合题意,
故x≤4,最高分是94,
去掉一个最高分94和一个最低分86后,
故平均分是$\frac{1}{5}$(89+92+90+x+91+92)=91,解得x=1,
故答案为:1.

点评 本题考查了茎叶图的应用,考查平均数的求法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.log2$\sqrt{2}$+log2$\frac{\sqrt{2}}{2}$=0;若a=log2$\sqrt{2}$,则2a+2-a=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x+$\frac{2}{a}}$|+|x-a|(a≠0).
(1)证明:f(x)≥2$\sqrt{2}$;
(2)如果a>0且f(3)<6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}与{bn}满足an+1-qbn+1=an-qbn,其中q∈R,n∈N*
(1)若{bn}是公差为2的等差数列,且a1=q=3,求数列{an}的通项公式;
(2)若{bn}是首项为2,公比为q的等比数列,a1=3q<0,且对任意m,n∈N*,an≠0,都有$\frac{a_m}{a_n}$∈(${\frac{1}{6}$,6),试求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{{{a^2}-1}}$=1(a>1)的左、右顶点分别为A、B,P是椭圆C上任一点,且点P位于第一象限.直线PA交y轴于点Q,直线PB交y轴于点R.当点Q坐标为(0,1)时,点R坐标为(0,2)
(1)求椭圆C的标准方程;
(2)求证:$\overrightarrow{OQ}$•$\overrightarrow{OR}$为定值;
(3)求证:过点R且与直线QB垂直的直线经过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)个元素构成集合Am.若Am的所有元素之和为偶数,则称Am为A的偶子集,其个数记为f(m);若Am的所有元素之和为奇数,则称Am为A的奇子集,其个数记为g(m).令F(m)=f(m)-g(m).
(1)当n=2时,求F(1),F(2),F(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)已知a=2,设函数f(x)=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$,当x=B时,f(x)取最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正△ABC中,$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影为-1,且$\overrightarrow{AD}=2\overrightarrow{DC}$,则$\overrightarrow{BD}•\overrightarrow{AC}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(2,-1),则E的离心率e=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案