精英家教网 > 高中数学 > 题目详情
定义在R上的可导函数f(x),已知y=ef'(x)的图象如图所示,则y=f(x)的增区间是
 

考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:由题意知,欲求函数的增区间,由图象确定出函数导数为非负的区间就可以了,由于y=ef'(x)是一个指数型的函数,当指数大于0时函数值大于1,故由图象找出函数图象在直线y=1上面的那一部分的自变量的集合即为所求
解答: 解:由题意如图f'(x)≥0的区间是(-∞,2),
故函数y=f(x)的增区间(-∞,2),
故答案为:(-∞,2),
点评:本题考查函数的单调性与导数的关系,由于函数的导数是指数型函数的指数,故可以借助指数函数的图象观察出导数非负的区间,此即为函数的递增区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班有50名学生,在学校组织的一次数学质量抽测中,如果按照抽测成绩的分数段[60,65),[65,70),…[95,100)进行分组,得到的分布情况如图所示.求:
(Ⅰ)该班抽测成绩在[70,85)之间的人数;
(Ⅱ)该班抽测成绩不低于85分的人数占全班总人数的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若两三角形全等则它们相似”的逆否命题为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+alnx
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一水池有2个进水口,1个出水口,每个进水口进水速度如图甲,出水口出水速度如图乙所示.某天0点到6点,该水池的蓄水量如图丙所示.

给出以下3个论断:①0点到3点只进水不出水;②3点到4点所打开一个进水口和一个出水口;③4点到6点不进水不出水.则正确论断的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-1),
OB
=(0,2),若
OC
AB
=0,
AC
OB
,则实数λ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2
1
1
xlna
dx=-1则实数a的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4ax(a>0)的焦点为A,以B(a+4,0)为圆心,|AB|长为半径,在x轴上方的半圆交抛物线于不同的两点M、N,P是MN的中点.
(1)求实数a的取值范围;
(2)求|AM|+|AN|的值;
(3)是否存在这样的a值,使|AM|,|AP|,|AN|成等差数列?

查看答案和解析>>

科目:高中数学 来源: 题型:

对于(2x-
1
2
x
12的展开式,求:
(1)各项系数的和;
(2)奇数项系数的和;
(3)偶数项系数的和.

查看答案和解析>>

同步练习册答案