【题目】在平面直角坐标系中,点,点在轴上,点在轴非负半轴上,点满足:
(1)当点在轴上移动时,求动点的轨迹C的方程;
(2)设为曲线C上一点,直线过点且与曲线C在点处的切线垂直,与C的另一个交点为,若以线段为直径的圆经过原点,求直线的方程.
【答案】(Ⅰ) (Ⅱ)
【解析】
试题分析:(1)由点在轴上,点在轴非负半轴上且为动点,可设出设A(a,0),B(0,b),M(x,y),由关系,将向量坐标代入可得动点的轨迹C的方程.
(2)设Q(m,2m2), 直线过点且与曲线C在点处的切线垂直,可求出直线l的方程为y﹣2m2=(x﹣m),设,联立与C的方程,并由韦达定理可得,, (2m2)yR,2m2yR,又由线段为直径的圆经过原点,所以,即mxR+(2m2)yR=0,整理后可求出直线的方程.
试题解析:
解:(Ⅰ)设A(a,0),M(x,y),B(0,b),则=(x﹣a,y),=(﹣a,b),=(a,1)
∵=2,∴有(x﹣a,y)=2(﹣a,b),即有x﹣a=﹣2a,y=2b,即x=﹣a,y=2b
∵,∴有a(x﹣a)+y=0
∴﹣x(x+x)+y=0,∴﹣2x2+y=0
即C的方程是y=2x2;
(Ⅱ)设Q(m,2m2),直线l的斜率为k,则y′=4x,∴k=
∴直线l的方程为y﹣2m2=(x﹣m)
与y=2x2联立,消去y可得2x2+x﹣2m2﹣=0,该方程必有两根m与xR,且mxR=﹣m2﹣
∴(2m2)yR=4(﹣m2﹣)2
∵,∴mxR+(2m2)yR=0,∴﹣m2﹣+4(﹣m2﹣)2=0,∴m=±
∴直线l的方程为.
科目:高中数学 来源: 题型:
【题目】在正四面体A—BCD中,棱长为4,M是BC的中点,
点P在线段AM上运动(P不与A、M重合),过
点P作直线l⊥平面ABC,l与平面BCD交于点Q,
给出下列命题:
①BC⊥平面AMD ②Q点一定在直线DM上
③
其中正确的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,
且,
(1)求数列的通项公式.
(2)设数列满足,
①求数列的通项公式;
②是否存在正整数,使得,,成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,侧面为正三角形,侧面底面,、分别为棱、的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在棱上是否存在一点,使得平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,点为左焦点,过点作轴的垂线交椭圆于、两点,且.
(1)求椭圆的方程;
(2)在圆上是否存在一点,使得在点处的切线与椭圆相交于、两点满足?若存在,求的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com