精英家教网 > 高中数学 > 题目详情
17.已知集合A={1,2},B={x|3x-a=0},若B⊆A,则实数的a值是3或6.

分析 根据B中元素均为A中元素,即可得出结论.

解答 解:由题意,3-a=0或6-a=0,
∴a=3或6.
故答案为3或6.

点评 本题考查集合关系中的参数取值问题,关键在于理解集合间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+bx+c(a,b,c∈R),满足f(0)=1,f(1)=0,且f(x+1)是偶函数.
(1)求函数f(x)的解析式;
(2)设h(x)=$\left\{\begin{array}{l}{f(x),x≥1}\\{-f(2-x),x<1}\end{array}\right.$,若对任意的x∈[t,t+2],不等式h(x+t)≤h(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是①③⑤(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α为锐角,且tan(π-α)+3=0,则sinα的值是$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于二次函数y=-4x2+8x-3,
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)说明其图象经过怎样平移得到y=-4x2的图象;
(3)求函数的值域;
(4)分析函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+y2+2x-3=0.
(1)求圆的圆心C的坐标和半径长;
(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1),B(x2,y2)两点,求证:$\frac{1}{x_1}$+$\frac{1}{x_2}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sinx,x∈R的最大值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由个别事实概括出一般结论的推理,称为归纳推理.以下推理为归纳推理的是(  )
A.三角函数都是周期函数,sinx是三角函数,所以sinx是周期函数
B.一切奇数都不能被2整除,525是奇数,所以525不能被2整除
C.由1=12,1+3=22,1+3+5=32,得1+3+…+(2n-1)=n2(n∈N*
D.两直线平行,同位角相等.若∠A与∠B是两条平行直线的同位角,则∠A=∠B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的个数有(  )
①函数f(x)=lg(2x-1)的值域为R;
②若(${\frac{2}{3}}$)a>(${\frac{2}{3}}$)b,则a<b;
③已知f(x)=$\left\{\begin{array}{l}{x^3}+1\;\;x>0\\ 2017x+1\;\;x≤0\end{array}$,则f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),则f(x)在[1,2016]上是增函数.
A.0个B.1个C.2 个D.3个Q

查看答案和解析>>

同步练习册答案