分析 举例说明命题①⑤是真命题;举反例说明命题②是假命题;假设直线l过两个不同的整点,设直线l为y=kx,把两整点的坐标代入直线l的方程,两式相减得到两整点的横纵坐标之差的那个点也为整点且在直线l上,利用同样的方法,得到直线l经过无穷多个整点,得到命题③为真命题;当k,b都为有理数时,y=kx+b可能不经过整点,例如k=$\frac{1}{2}$,b=$\frac{1}{3}$,说明④是假命题.
解答 解:①令y=x+$\frac{1}{2}$,既不与坐标轴平行又不经过任何整点,命题①正确;
②若k=$\sqrt{2}$,b=$\sqrt{2}$,则直线y=$\sqrt{2}$x+$\sqrt{2}$经过(-1,0),命题②错误;
③设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),
把两点代入直线l方程得:y1=kx1,y2=kx2,
两式相减得:y1-y2=k(x1-x2),
则(x1-x2,y1-y2)也在直线y=kx上且为整点,
通过这种方法得到直线l经过无穷多个整点,则③正确;
④当k,b都为有理数时,y=kx+b可能不经过整点,例如k=$\frac{1}{2}$,b=$\frac{1}{3}$,故④不正确;
⑤令直线y=$\sqrt{2}$x恰经过整点(0,0),命题⑤正确.
综上,命题正确的序号有:①③⑤.
故答案为:①③⑤.
点评 本题考查命题的真假判断与应用,说明一个命题为假命题,只需举一反例即可,要说明一个命题是真命题必须经过严格的说理证明,考查学生对题中新定义的理解能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x<3} | B. | {x|-1<x<3} | C. | {x|x≥-1} | D. | {x|x>3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com