精英家教网 > 高中数学 > 题目详情
12.对于二次函数y=-4x2+8x-3,
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)说明其图象经过怎样平移得到y=-4x2的图象;
(3)求函数的值域;
(4)分析函数的单调性.

分析 (1)直接观察函数开口,求出对称轴即可;
(2)把y=-4x2+8x-3横坐标向左平移1个单位,纵坐标向下平移1个单位;
(3)因为函数开口朝下,所以函数y在x=1出取得最大值y(1)=1;
(4)因为函数开口朝下,对称轴为x=1,所以函数在(-∞,1)上单调递增,在(1,+∞)上单调递减

解答 解:(1)y=-4x2+8x-3=-4(x-1)2+1,定义域为R;
二次函数a=-4<0,所以开口朝下;对称轴方程为x=-$\frac{b}{2a}$=1,顶点坐标为(1,1);
(2)把y=-4x2+8x-3横坐标向左平移1个单位,纵坐标向下平移1个单位,即得到y=-4x2
(3)因为函数开口朝下,所以函数y在x=1出取得最大值y(1)=1,
所以,函数值域为:(-∞,1];
(4)因为函数开口朝下,对称轴为x=1,所以函数在(-∞,1)上单调递增,在(1,+∞)上单调递减.

点评 本题主要考查了二次函数的基本性质,顶点坐标、对称轴、单调性、函数平移等基础知识点,属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且满足2an-1=Sn
(1)求数列{an}的通项公式;
(2)对任意n,k∈N*,有λ2+k2-$\frac{λn}{{a}_{n}}$-10k+$\frac{97}{4}$>0,求正数λ的取值范围;
(3)设bn=an-(-1)n,记Tn=$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$,求证:T2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求解下列问题:
(1)求函数f(x)=$\frac{{{{({x-2})}^0}}}{{\sqrt{x+1}}}$的定义域;
(2)求函数f(x)=2x-$\sqrt{x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,设函数f(x)=min{$\sqrt{x}$,|x-2|},若直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3的取值范围为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.首项为24的等差数列,从第10项起开始为负数,则公差的取值范围是(  )
A.d>-$\frac{8}{3}$B.d<-3C.-3<d≤-$\frac{8}{3}$D.-3≤d<-$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={1,2},B={x|3x-a=0},若B⊆A,则实数的a值是3或6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{x}$的定义域是(  )
A.RB.{x|x≥0}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,$\sqrt{11}$,…的一个通项公式是(  )
A.${a_n}=\sqrt{n+1}$B.${a_n}=\sqrt{3n-1}$C.${a_n}=\sqrt{3n+1}$D.${a_n}=\sqrt{n+3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.若对任意的a∈[$\frac{1}{2}$,2],不等式f(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,则b的取值范围为(-∞,$\frac{7}{4}$].

查看答案和解析>>

同步练习册答案