精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= (a>0,且a≠1)的值域为(﹣∞,+∞),则实数a的取值范围是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

【答案】D
【解析】解:①若a>3,x<0时,0<f(x)<1,x≥0时,f(x)≥4a,此时不满足f(x)的值域为(﹣∞,+∞);
②若a=3,显然不成立;
③若1<a<3,x<0时,0<f(x)<1,x≥0时,f(x)≤4a,不满足值域(﹣∞,+∞);
④若0<a<1,x<0时,f(x)>1,x≥0时,f(x)≤4a;
要使f(x)的值域为(﹣∞,+∞),则:4a≥1;

∴实数a的取值范围是
故选D.
【考点精析】本题主要考查了函数的值域的相关知识点,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(I)见解析; (Ⅱ)见解析.

【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.

详解:(I)由题意得,甲公司一名推销员的日工资 (单位:) 与销售件数的关系式为: .

乙公司一名推销员的日工资 (单位: ) 与销售件数的关系式为:

()记甲公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

记乙公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

120

128

144

160

0.2

0.3

0.4

0.1

∴仅从日均收入的角度考虑,我会选择去乙公司.

点睛:求解离散型随机变量的数学期望的一般步骤为:

第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

第二步是探求概率,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;

第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值

型】解答
束】
19

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的两个零点为,且.

(Ⅰ)求的取值范围;

(Ⅱ)若,且函数在区间上的最大值为,试判断点是否在直线上? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的实根分别为x1、x2和x3、x4 , 若x1<x3<x2<x4 , 则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2
(I) 求数列{an}的通项公式;
(Ⅱ)数列{bn}定义如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通项公式及{(﹣1)m1bm}的前2m项和T2m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为 ,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1
(Ⅱ)求锐二面角B﹣AC﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1﹣30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 方程 有两个不相等的负实根,

命题 不等式 的解集为

(1)若为真命题,求 的取值范围.

(2)若 为真命题, 为假命题,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知椭圆的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.

查看答案和解析>>

同步练习册答案