精英家教网 > 高中数学 > 题目详情

已知函数的周期为,图象的一个对称中心为,将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数的图象。
(Ⅰ)求函数的解析式
(Ⅱ)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数,若不存在,说明理由;
(Ⅲ)求实数与正整数,使得内恰有2013个零点

(Ⅰ) (Ⅱ)存在(Ⅲ)当时,函数内恰有个零点

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为ΔABC三个内角A,B,C的对边长,.
(Ⅰ)求角A的大小;
(II)若a=,ΔABC的面积为1,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)求函数的单调增区间;
(3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三边为,满足
(1)求的值;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且的图象的一个对称中心到最近的对称轴的距离为
(Ⅰ)求的值;
(Ⅱ)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)在中,角所对的边分别是,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和最大值;
(2)求函数单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知M(1+cos2x,1)、N(1,)(是常数),且
(O为坐标原点)
(1)求y关于x的函数关系式
(2)若时,最大值为2013,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)将函数化简成的形式;
(2)求的单调递减区间;
(3)求函数上的最大值和最小值.

查看答案和解析>>

同步练习册答案