精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

【答案】所求动点M的轨迹方程是 ()

直线CD的方程可化为. 直线CD恒过定点,且定点坐标为(20)

【解析】(本题满分12)本题共有2个小题,第1小题满分5分,第2小题满分7分.

(1) 设动点M的坐标为…………………1

抛物线的焦点是,直线l恒过点F,且与抛物线交于两点AB

…………………3

,化简,得…………………5

又当M与原点重合时,直线lx轴重合,故

所求动点M的轨迹方程是 ()

(2) 设点CD的坐标为…………………………6

CD在抛物线上,

,即

………8

CD的坐标为

直线CD的一个法向量是,可得直线CD的方程为:

,化简,得

,进一步用,有

又抛物线上任两点的纵坐标都不相等,即

直线CD的方程可化为………………………10

直线CD恒过定点,且定点坐标为(20)………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知),,且直线与曲线相切.

(1)求的值;

(2)若对内的一切实数,不等式恒成立,求实数的取值范围;

(3)求证: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处切线与直线垂直(其中为自然对数的底数).

(1)求的解析式及单调减区间;

(2)是否存在常数,使得对于定义域的任意恒成立,若存在,求出 的值;若

不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若函数有零点,求实数的取值范围;

(2)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的两个焦点为 ,离心率为,点 在椭圆上, 在线段上,且的周长等于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过圆 上任意一点作椭圆的两条切线与圆交于点 ,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方,且.

1求椭圆的方程;

2为椭圆与轴正半轴的交点时,求直线方程;

3对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两城相距100 km,在两地之间距Ax km处的D地建一核电站给AB两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

(1)求x的取值范围;

(2)把月供电总费用y表示成x的函数;

(3)核电站建在距A城多远,才能使供电费用最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若的三条边长,则下列结论中正确的是( )

①存在,使不能构成一个三角形的三条边

②对一切,都有

③若为钝角三角形,则存在,使

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

同步练习册答案