精英家教网 > 高中数学 > 题目详情

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方,且.

1求椭圆的方程;

2为椭圆与轴正半轴的交点时,求直线方程;

3对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

【答案】1 2 3 直线总经过定点.

【解析】

试题分析:1 ,用坐标表示条件列出方程化简整理可得椭圆的标准方程;21可知,即可得,由,写出直线的方程与椭圆方程联立,求出点的坐标,由两点式求直线的方程即可;3,得,设直线方程为,与椭圆方程联立得,由根与系数关系计算,从而得到直线方程为,从而得到直线过定点.

试题解析: 1,则………………1分

,化简,得椭圆的方程为.………………3分

2………………4分

.

代入解,得………………6分

.即直线方程为.………………7分

3.

,直线方程为.代直线方程,得

.………………9分

=

……………11分

直线方程为

直线总经过定点.………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.

(1)求的解析式,并求的对称中心;

(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为角的对边,设.

(1)若,且,求角的大小;

(2)若,求角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线相交于两点,点关于轴的对称点为

(Ⅰ)判断点是否在直线上,并给出证明;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中平面,且

(1)求证:

(2)在线段上,是否存在一点,使得二面角的大小为45°,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥中, ,侧棱与底面所成角的正切值为

(1)若中点,求异面直线所成角的正切值;

(2)求侧面与底面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的.

查看答案和解析>>

同步练习册答案