【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1(bn≠0).
(1)求数列{an},{bn}的通项公式;
(2)设cn=
,求数列{cn}的前n项和Sn.
科目:高中数学 来源: 题型:
【题目】给定椭圆
,称圆
为椭圆
的“伴随圆”.已知点
是椭圆
上的点
(1)若过点
的直线
与椭圆
有且只有一个公共点,求
被椭圆
的伴随圆
所截得的弦长:
(2)
是椭圆
上的两点,设
是直线
的斜率,且满足
,试问:直线
是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)下列命题中为真命题的是( )
A.若事件
与事件
互为对立事件,则事件
与事件
为互斥事件
B.若事件
与事件
为互斥事件,则事件
与事件
互为对立事件
C.若事件
与事件
互为对立事件,则事件
为必然事件
D.若事件
为必然事件,则事件
与事件
为互斥事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北
的方向上,仰角为
,行驶4km后到达B处,测得此山顶在西偏北
的方向上.
![]()
(1)求此山的高度(单位:km);
(2)设汽车行驶过程中仰望山顶D的最大仰角为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率
利润
保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(2)设每份保单的保费在20元的基础上每增加
元,对应的销量为
(万份).从历史销售记录中抽样得到如下5组
与
的对应数据:
| 25 | 30 | 38 | 45 | 52 |
销量为 | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知
与
有较强的线性相关关系,且据此计算出的回归方程为
.
![]()
(ⅰ)求参数
的值;
(ⅱ)若把回归方程
当作
与
的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入
每份保单的保费
销量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面是水稻产量与施化肥量的一组观测数据(单位:千克/亩):
施化肥量 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
水稻产量 | 320 | 330 | 360 | 410 | 460 | 470 | 480 |
(1)将上述数据制成散点图;
(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】今年消毒液和口罩成了抢手年货,老百姓几乎人人都需要,但对于
这种口罩,大多数人不是很了解.现随机抽取40人进行调查,其中45岁以下的有20人,在接受调查的40人中,对于
这种口罩了解的占
,其中45岁以上(含45岁)的人数占
.
(1)将答题卡上的列联表补充完整;
(2)判断是否有
的把握认为对
这种口罩的了解与否与年龄有关.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用共享单车情况与年龄有关?
(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,
求这5人中经常使用、偶尔或不用共享单车的人数;
从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com