精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
x
+lnx的极小值为
 
考点:利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:先求出其导函数,利用导函数值的正负来求其单调区间,进而求得其极值.(注意是在定义域内研究其单调性)
解答: 解:∵f(x)=
1
x
+lnx,
∴f′(x)=
x-1
x2

∵x>0
∴当x>1时,f′(x)>0,即f(x)递增;
当0<x<1时,f′(x)<0,f(x)递减.
且f(x) 极小值为f( 1)=1.
故答案为:1.
点评:本题主要考查利用导数研究函数的极值以及函数的单调性,利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

①不等式x2+bx+c<0的解集为(2,3),则b-c=-11;
②函数f(x)=
x2-2x+5
+
x2-4x+13
的最小值为
29

③若角A,角B为钝角△ABC的两锐角,则有sinA+sinB<cosA+cosB;
④在等比数列{an}中,a3=4,S3=12,则通项公式an=(-
1
2
n-5
⑤直线x-y+1=0关于点P(3,2)的对称直线为:x-y-3=0;
以上说法正确的是
 
.(填上你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线(m-1)x+y+2m+1=0过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某牛奶厂2010年初有资金1000万元,由于引进了先进生产设备,资金年平均增长率可达到50%,每年年底扣除下一年的消费基金后,剩余资金投入再生产.这家牛奶厂应扣除
 
(精确到万元)消费基金,才能实现经过5年资金达到2000万元的目标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的可导函数f(x)满足f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)<0.设a=f(0),b=f(
1
2
),c=f(3),则(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

当x、y满足条件|x|+|y|<1时,变量u=
y-3
x
的取值范围是(  )
A、(-
1
3
1
3
B、(-∞,-
1
3
)∪(
1
3
,+∞)
C、(-3,3)
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos1180°=t,则tan800°等于(  )
A、
1+t2
|t|
B、
1-t2
-t
C、
1+t2
t
D、
1-t2
t

查看答案和解析>>

同步练习册答案