精英家教网 > 高中数学 > 题目详情
3.若经过(a,-3)和(1,2)两点的直线的倾斜角为135°,则a的值为(  )
A.-6B.6C.-4D.4

分析 首先,根据斜率公式得到k=$\frac{2+3}{1-a}$=tan135°=-1,然后,求解a的值即可.

解答 解:根据斜率公式:k=$\frac{2+3}{1-a}$=tan135°=-1,
∴1-a=-5,
∴a=6.
故选:B.

点评 本题重点考查了知两点求解斜率和斜率的计算公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在公比大于1的等比数列{an}中,a3a7=8,a2+a8=9,则a12=(  )
A.32B.24C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某射手射击1次,击中目标的概率是0.8,他连续射击4次,有各次射击是否击中目标相互之间没有影响.有下列结论:
(1)第二次击中目标的概率是0.8;
(2)恰好击中目标三次的概率是0.83×0.2;
(3)至少击中目标一次的概率是1-0.24
其中正确的结论的序号是①③ (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f($\sqrt{x}$-1)=x+a.
(1)求函数f(x)的解析式及定义域;
(2)若f(x)>0对任意的x≥0恒成立,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=($\frac{1}{2}$)x.若存在x0∈[$\frac{1}{2}$,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤m+1}若B⊆A,则m的取值范围$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x2+2x-3(x<-3)的反函数f-1(x)=(  )
A.$-\sqrt{x+4}-1(x>0)$B.$\sqrt{x+4}-1(x>0)$C.$-\sqrt{x+4}-1(x<-3)$D.$\sqrt{x+4}-1(x<-3)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.
(1)求证:直线MF∥平面ABCD
(2)求证:MF⊥平面ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的前n项和为S„,已知S1,S3,S2,成等差数列.
(1)求{an}的公比q;
(2)等差数列{bn}中,b5=9,公差d=4q,求数列{bn}的前n项和Tn的最大值.

查看答案和解析>>

同步练习册答案