精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.

(Ⅰ)  (Ⅱ)最小值为

解析试题分析:(Ⅰ)由题意,.
时,,解得
时,,解得.
综上,所求解集为.
(Ⅱ)设此最小值为.
①当时,在区间上,.
因为
在区间上是增函数,所以.
②当时,在区间上,,由
.
③当时,在区间上,.
.
,在区间,从而为区间上的增函数,
由此得.
,则.
时,,从而为区间上的增函数;
时,,从而为区间上的减函数.
因此,当时,.
时,,故
时,,故.
综上所述,所求函数的最小值

考点:本小题主要考查含绝对值的函数的最值的求法和利用导数求函数的最值,考查学生分类讨论思想的应用和运算求解能力.
点评:求解含绝对值的不等式或函数问题,关键是通过讨论去掉绝对值符号,讨论的时候要注意做到“不重不漏”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

命题方程有两个不等的正实数根,命题方程无实数根。若“”为真命题,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知二次函数
(1)设上的最大值、最小值分别是,集合,且,记,求的最小值.
(2)当时,
①设,不等式的解集为C,且,求实数的取值范围;
②设 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数.
(1)求的定义域;(2)判断的奇偶性并证明;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已
知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目类别
 
年固定成本
 
每件产品成本
 
每件产品销售价
 
每年最多可生产的件数
 
A产品
 
10
 
m
 
5
 
100
 
B产品
 
20
 
4
 
9
 
60
 
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[3,4].另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)解下列关于的不等式:  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知,设函数= ax2 +x-3alnx.
(I)求函数的单调区间;
(II)当a=-1时,证明:≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数最大值和最小值;
(2)若方程有两根,试求的值.

查看答案和解析>>

同步练习册答案