精英家教网 > 高中数学 > 题目详情

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

(Ⅰ)枯水期为1月,2月,,3月,4月,11月,12月共6个月.
(Ⅱ)一年内该水库的最大蓄水量是108.32亿立方米

解析试题分析:(1)分段求出水库的蓄求量小于50时x的取值范围,注意实际问题x要取整.
(2)一年内该水库的最大蓄水量肯定不在枯水期,则V(t)的最大值只能在(4,10)内达到,然后通过导数在给定区间上研究V(t)的最大值,最后注意作答
解:(Ⅰ)①当0<t10时,V(t)=(-t2+14t-40)化简得t2-14t+40>0,
解得t<4,或t>10,又0<t10,故0<t<4.
②当10<t12时,V(t)=4(t-10)(3t-41)+50<50,化简得(t-10)(3t-41)<0,
解得10<t<,又10<t12,故 10<t12  .综合得0<t<4,或10<t12,
故知枯水期为1月,2月,,3月,4月,11月,12月共6个月.
(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)内达到.
由V′(t)= 令V′(t)=0,解得t=8(t=-2舍去).
当t变化时,V′(t) 与V (t)的变化情况如下表:

t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)

极大值

由上表,V(t)在t=8时取得最大值V(8)=8e2+50-108.52(亿立方米).
故知一年内该水库的最大蓄水量是108.32亿立方米
考点:本题主要是考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.
点评:解决该试题的关键是一元二次不等式的求解以及运用导数的思想来判定函数 单调性,进而得到极值,求解最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.
(1)求函数解析式;
(1)求销售价为13元时每天的销售利润;
(2)如果销售利润为360元,那么销售价上涨了几元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元;当用水超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨和吨。
(1)求关于的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数f(x)="sinx+cosx+sinxcosx." x∈﹝0,﹞的最大值并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分) 计算下列各式的值:
(1) ;
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(1)计算
(2)   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)
(Ⅰ)求的函数解析式;
(Ⅱ)求的最大值,以及取得最大值时的值.

查看答案和解析>>

同步练习册答案