精英家教网 > 高中数学 > 题目详情

(本题满分16分)某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.
(1)求函数解析式;
(1)求销售价为13元时每天的销售利润;
(2)如果销售利润为360元,那么销售价上涨了几元?

(1);(2)350元;(3)4元。

解析试题分析:(1)设这种商品的销售价每个上涨元,则每天销售量为     ………2分
∴销售利润为    …………8分
(2)当销售价为13元时,即
答:销售价为13元时每天的销售利润350元.…………………12分
(2)当                
答: 销售利润为360元,那么销售价上涨了4元.…………………16分
考点:二次函数模型的实际应用。
点评:二次函数是我们比较熟悉的基本函数,建立二次函数模型可解决很多实际应用题,但在求函数的解析式时,一定要记得注明函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

计算
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题方程有两个不等的正实数根,命题方程无实数根。若“”为真命题,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数为偶函数.
⑴求的值;
⑵若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(1)求值
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知二次函数
(1)设上的最大值、最小值分别是,集合,且,记,求的最小值.
(2)当时,
①设,不等式的解集为C,且,求实数的取值范围;
②设 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知,设函数= ax2 +x-3alnx.
(I)求函数的单调区间;
(II)当a=-1时,证明:≤2x-2.

查看答案和解析>>

同步练习册答案