精英家教网 > 高中数学 > 题目详情

(本题满分12分)解下列关于的不等式:  

①当时,,∴原不等式的解集为
②当∴原不等式的解集为:
③当,∴原不等式解集为

解析试题分析:对于一元二次不等式的求解,先确定方程的根,然后结合图像与性质来得到不等式的解集。
解:方程的根为   ∵于是
①当时,,∴原不等式的解集为
②当∴原不等式的解集为:
③当,∴原不等式解集为
考点:本题主要考查了一元二次不等式的解集的求解的运用。
点评:解决该试题的关键是对于二次函数的开口方向和根的大小来运用分类讨论的思想来得到不等式的解集问题的运用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房,经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数f(x)="sinx+cosx+sinxcosx." x∈﹝0,﹞的最大值并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年全国第十二届全运会由沈阳承办。城建部门计划在浑南新区建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(1)计算
(2)   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度关于时间的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(1)求值:
(2)解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数是定义在上的奇函数,且
(1)确定函数的解析式。
(2)用定义法证明上是增函数。
(3)解关于t的不等式

查看答案和解析>>

同步练习册答案