精英家教网 > 高中数学 > 题目详情

【题目】已知集合A{x|x22x30}B{x|x22mxm240xRmR}

(1)AB[0,3],求实数m的值;

(2)ARB,求实数m的取值范围.

【答案】(1)2;(2)

【解析】试题分析:(1)根据一元二次不等式的解法,对AB集合中的不等式进行因式分解,从而解出集合AB,再根据A∩B=[03],求出实数m的值;

2)由(1)解出的集合AB,因为ACRB,根据子集的定义和补集的定义,列出等式进行求解.

解:由已知得:A={x|﹣1≤x≤3}

B={x|m﹣2≤x≤m+2}

1∵A∩B=[03]

∴m=2

2CRB={x|xm﹣2,或xm+2}

∵ACRB

∴m﹣23,或m+2﹣1

∴m5,或m﹣3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面是不重合的两个面,下列命题中,所有正确命题的序号是_____.

①若 分别是平面的法向量,则

②若 分别是平面 的法向量,则

③若是平面的法向量, 共面,则

④若两个平面的法向量不垂直,则这两个平面一定不垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年12月4日0时起郑州市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.

(1)设使用年该车的总费用(包括购车费用)为,试写出的表达式;

2问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市“金牛”公园欲在长、宽分别为 的矩形地块内开凿一“挞圆”形水池(如图),池边由两个半椭圆)组成,其中,“挞圆”内切于矩形且其左右顶点 和上顶点构成一个直角三角形

(1)试求“挞圆”方程;

(2)若在“挞圆”形水池内建一矩形网箱养殖观赏鱼,则该网箱水面面积最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,平行于轴的两条直线分别交两点,交的准线于两点.

(1)若在线段上, 的中点,证明:

(2)若的面积是的面积的两倍,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步练习册答案