精英家教网 > 高中数学 > 题目详情

【题目】2017年12月4日0时起郑州市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.

(1)设使用年该车的总费用(包括购车费用)为,试写出的表达式;

2问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?

【答案】(1) (2) 这种新能源汽车使用12年报废最合算,年平均费用的最小值是3.4万元.

【解析】试题分析:(I)由已知中某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增,根据等差数列前n项和公式,即可得到f(n)的表达式;

(II)由(I)中使用n年该车的总费用,我们可以得到n年平均费用表达式,根据基本不等式,我们易计算出平均费用最小时的n值,进而得到结论.

试题解析:

解:(1)由题意得

(2)设该车的年平均费用为万元,则有

当且仅当,即时,等号成立,即取最小值3.4万元.

答:这种新能源汽车使用12年报废最合算,年平均费用的最小值是3.4万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: + =1(a>b>0)的离心率是 ,且过点( ).设点A1 , B1分别是椭圆的右顶点和上顶点,如图所示过 点A1 , B1引椭圆C的两条弦A1E、B1F.

(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0②设直线EF的方程为y=k0x+b(﹣1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2 , 求S1+S2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是R上的偶函数,在(﹣3,﹣2)上为减函数且对x∈R都有f(2﹣x)=f(x),若A,B是钝角三角形ABC的两个锐角,则(
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)与与f(cosB)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体经营者把开始六个月试销AB两种商品的逐月投资与所获纯利润列成下表:

投资A商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.65

1.39

1.85

2

1.84

1.40

投资B商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.25

0.49

0.76

1

1.26

1.51

该经营者准备下月投入12万元经营这两种产品,但不知投入AB两种商品各多少才最合算请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足条件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,则△ABC的周长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上任意一点,点与点关于原点对称,线段的垂直平分线与交于.

(1)求点的轨迹的方程;

(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x22x30}B{x|x22mxm240xRmR}

(1)AB[0,3],求实数m的值;

(2)ARB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆E的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直线l过原点,且它的倾斜角α= ,求l与圆E的交点A的极坐标(点A不是坐标原点);
(2)直线m过线段OA中点M,且直线m交圆E于B、C两点,求||MB|﹣|MC||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费) (万元),x表示输送污水管道的长度(千米);
已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)

(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系 式,并求y的取值范围.

查看答案和解析>>

同步练习册答案