精英家教网 > 高中数学 > 题目详情
8.若实数x,y满足:|x|≤y≤1,则x2+y2-2x的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}-1$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

分析 由实数x,y满足:|x|≤y≤1,可得可行域为:P(1,0),Q点为可行域内的任意一点,当PQ⊥直线y=x时,|PQ|取得最小值,因此|PQ|2取得最小值.

解答 解:由实数x,y满足:|x|≤y≤1,可得可行域为:
P(1,0),Q点为可行域内的任意一点,当PQ⊥直线y=x时,
|PQ|取得最小值,因此|PQ|2取得最小值,
则x2+y2-2x=(x-1)2+y2-1≥|PQ|2-1=$(\frac{1-0}{\sqrt{2}})^{2}$-1=-$\frac{1}{2}$.
∴x2+y2-2x的最小值为-$\frac{1}{2}$.
故选:D.

点评 本题考查了线性规划有关知识、点到直线的距离公式、数形结合思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知命题p:函数f(x)=x2-2ax+3在区间[-1,2]上单调递增;
命题q:函数g(x)=lg(x2+ax+4)的定义域为R;
若命题“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC满足$AB=4,AC=2,∠BAC=\frac{2π}{3}$,点D、E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则 $\overrightarrow{AF}•\overrightarrow{DC}$的值为(  )
A.-$\frac{3}{2}$B.$\frac{9}{4}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,则$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,若N=10,则输出的数等于(  )
A.$\frac{10}{9}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:
指标1号小白鼠2号小白鼠3号小白鼠4号小白鼠5号小白鼠
A57698
B22344
(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.根据如下样本数据
345678
y4.02.5-0.50.5-2.0-3.0
得到的回归方程为${\;}_{y}^{∧}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$,则(  )
A.${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$>0B.${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$<0C.${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$>0D.${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=2tan(2x-\frac{π}{4})-1$在一个周期内的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=alnx-x+2,(其中实数a≠0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)如果对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)≥3,求a的最小值.

查看答案和解析>>

同步练习册答案