分析 由题意和等比数列可得a+b=1,进而可得$\frac{1}{a}$+$\frac{1}{b}$=($\frac{1}{a}$+$\frac{1}{b}$)(a+b)=2+$\frac{b}{a}$+$\frac{a}{b}$,由基本不等式可得.
解答 解:∵a>0,b>0,2a,$\sqrt{2}$,2b成等比数列,
∴($\sqrt{2}$)2=2a•2b=2a+b,∴a+b=1
∴$\frac{1}{a}$+$\frac{1}{b}$=($\frac{1}{a}$+$\frac{1}{b}$)(a+b)
=2+$\frac{b}{a}$+$\frac{a}{b}$≥2+2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=4
当且仅当$\frac{b}{a}$=$\frac{a}{b}$即a=b=$\frac{1}{2}$时取等号,
故答案为:4
点评 本题考查基本不等式求最值,属解等比数列的通项公式,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{33}{65}$ | B. | $\frac{63}{65}$ | C. | $\frac{33}{65}$或-$\frac{33}{65}$ | D. | -$\frac{63}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:选择题
已知数列
的通项公式
,设其前
项和为
,则使
成立的自然数
有( )
A.最大值15 B.最小值15
C.最大值16 D.最小值16
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com