精英家教网 > 高中数学 > 题目详情
人们生活水平的提高,越来越注重科学饮食.营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,每天需要同时食用食物A和食物B多少kg?
考点:简单线性规划的应用
专题:计算题,数形结合
分析:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.
解答: 解:设每天食用xkg食物A,ykg食物B,总花费为z元,那么
则目标函数为z=28x+21y,且x,y满足约束条件
0.105x+0.105y≥0.075
0.07x+0.14y≥0.06
0.14x+0.07y≥0.06
x≥0,y≥0
,…(3分)
整理
7x+7y≥5
7x+14y≥6
14x+7y≥6
x≥0,y≥0
,…(5分)
作出约束条件所表示的可行域,
如右图所示.…(7分)
将目标函数z=28x+21y变形为
y=
4
3
x+
z
21
.如图,作直线28x+21y=0,当直线平移经过可行域,在过点M处时,y轴上截距
z
21
最小,即此时z有最小值.…(9分)
解方程组
7x+7y=5
14x+7y=6
,得点M的坐标为(
1
7
4
7
)
.…(12分)
∴每天需要同时食用食物A约
1
7
kg,食物B约
4
7
kg.…(13分)
点评:本题考查简单线性规划的应用,用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式组
2x-1>1
4-2x≤0
的解在数轴上表示为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

{a,b}的非空真子集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a1+a3=4,a2•a3=6;等比数列{bn}满足:b1b3b5=64,b3+b4=16.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=
1
4
bn-x•2an
,若数列{cn}是递增数列,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的增函数,且满足条件以下条件:f(xy)=f(x)+f(y),f(2)=1.
(1)求证:f(8)=3.
(2)求不等式f(x)>3+f(x-2)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正实数x,y,z满足x2-3xy+4y2-z=0,则当
z
xy
取得最小值时,x+2y-z的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于弦AD,若OB=3,OC=5,则CD=
 

查看答案和解析>>

同步练习册答案