精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2x-3x2,设数列{an}满足:a1=$\frac{1}{4}$,an+1=f(an
(1)求证:对任意的n∈N*,都有0<an<$\frac{1}{3}$;
(2)求证:$\frac{3}{1-3{a}_{1}}$+$\frac{3}{1-3{a}_{2}}$+…+$\frac{3}{1-3{a}_{n}}$≥4n+1-4.

分析 (1)由已知可得:an+1=2an-3${a}_{n}^{2}$=-3$({a}_{n}-\frac{1}{3})^{2}$+$\frac{1}{3}$≤$\frac{1}{3}$.可得an<$\frac{1}{3}$.作差${a}_{n+1}({a}_{n+1}-\frac{1}{3})$=$(2{a}_{n}-3{a}_{n}^{2})$$(2{a}_{n}-3{a}_{n}^{2}-\frac{1}{3})$=3an(3an-2)$({a}_{n}-\frac{1}{3})^{2}$,由an<$\frac{1}{3}$(n∈N*),可得:an+1与an同号,因此an>0,
(2)由0<an<$\frac{1}{3}$,an+1=2an-3${a}_{n}^{2}$,可得an+1-an=${a}_{n}-3{a}_{n}^{2}$=an(1-3an)>0,因此数列{an}单调递增.n>1时,$\frac{1}{3}>$${a}_{n}>\frac{1}{4}$,可得$\frac{1}{1-3{a}_{n}}$>4,$\frac{1}{1-3{a}_{n+1}}$=$\frac{1}{(1-3{a}_{n})^{2}}$>$\frac{4}{1-3{a}_{n}}$>…>$\frac{{4}^{n}}{1-3{a}_{1}}$,即可证明.

解答 证明:(1)∵an+1=f(an),函数f(x)=2x-3x2
∴an+1=2an-3${a}_{n}^{2}$=-3$({a}_{n}-\frac{1}{3})^{2}$+$\frac{1}{3}$≤$\frac{1}{3}$.
若an+1=$\frac{1}{3}$,则an=$\frac{1}{3}$,可得a1=$\frac{1}{3}$,与已知a1=$\frac{1}{4}$矛盾,因此等号不成立.
∴an<$\frac{1}{3}$.
${a}_{n+1}({a}_{n+1}-\frac{1}{3})$=$(2{a}_{n}-3{a}_{n}^{2})$$(2{a}_{n}-3{a}_{n}^{2}-\frac{1}{3})$=$(3{a}_{n}^{2}-2{a}_{n})(3{a}_{n}^{2}-2{a}_{n}+\frac{1}{3})$=3an(3an-2)$({a}_{n}-\frac{1}{3})^{2}$,
由an<$\frac{1}{3}$(n∈N*),可得an+1$<\frac{1}{3}$,3an-2<0,
因此an+1与an同号,a1=$\frac{1}{4}$>0,
∴an>0,
综上可得:对任意的n∈N*,都有0<an<$\frac{1}{3}$.
(2)∵0<an<$\frac{1}{3}$,an+1=2an-3${a}_{n}^{2}$,
∴an+1-an=${a}_{n}-3{a}_{n}^{2}$=an(1-3an)>0,
∴an+1>an
∴数列{an}单调递增.
∴n>1时,$\frac{1}{3}>$${a}_{n}>\frac{1}{4}$,
∴$\frac{1}{1-3{a}_{n}}$>4,
∴$\frac{1}{1-3{a}_{n+1}}$=$\frac{1}{1-3(2{a}_{n}-3{a}_{n}^{2})}$=$\frac{1}{(1-3{a}_{n})^{2}}$>$\frac{4}{1-3{a}_{n}}$>$\frac{{4}^{2}}{1-3{a}_{n-1}}$>…>$\frac{{4}^{n}}{1-3{a}_{1}}$=4n+1
∴$\frac{3}{1-3{a}_{1}}$+$\frac{3}{1-3{a}_{2}}$+…+$\frac{3}{1-3{a}_{n}}$≥3(4+42+…+4n)=3×$\frac{4({4}^{n}-1)}{4-1}$=4n+1-4.
∴$\frac{3}{1-3{a}_{1}}$+$\frac{3}{1-3{a}_{2}}$+…+$\frac{3}{1-3{a}_{n}}$≥4n+1-4.

点评 本题考查了等比数列的通项公式及其前n项和公式、“放缩法”、不等式的性质、递推关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{5π}{6}$)的值为(  )
A.$-\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,高AD把BC分为长2cm和3cm的两段,∠A=45°,则S△ABC=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2$\sqrt{2}$-1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4
(i)求k1k2的值;
(ii)求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知球O表面上有三个点A、B、C满足AB=BC=CA=3,球心O到平面ABC的距离等于球O半径的一半,则球O的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P={x|-x2+2x≤0},Q={x|1<x≤3},则(∁RP)∩Q等于(  )
A.[1,3]B.(2,3]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是(  )
A.19B.20C.21.5D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程x2+y2=k-6表示一个圆,则k的取值范围是k>6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某中学数学组来了5名即将毕业的大学生进行教学实习活动,现将他们分配到高一年级的1,2,3三个班实习,每班至少一名,最多两名,则不同的分配方案有(  )
A.30种B.90种C.150种D.180种

查看答案和解析>>

同步练习册答案