分析 (1)设出椭圆右焦点坐标,由题意可知,椭圆右焦点F2到直线x+y+2$\sqrt{2}$-1=0的距离为a,再由椭圆C的两焦点与短轴的一个端点的连线构成等边三角形得到a,b,c的关系,结合焦点F2到直线x+y+2$\sqrt{2}$-1=0的距离为a可解得a,b,c的值,则椭圆方程可求;
(2)(i)由题意设B(x1,y1),C(x2,y2),则D(-x1,-y1),由两点求斜率公式可得是${k}_{1}{k}_{2}=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}•\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}=\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$,把纵坐标用横坐标替换可得答案;
(ii)由k1k2=k3k4.得到${y}_{1}{y}_{2}=-\frac{3}{4}{x}_{1}{x}_{2}$.两边平方后用x替换y可得${{x}_{1}}^{2}+{{x}_{2}}^{2}=4$.结合点B,C在椭圆上得到${{y}_{1}}^{2}+{{y}_{2}}^{2}=3$.则OB2+OC2的值可求.
解答 解:(1)设椭圆C的右焦点F2(c,0),则c2=a2-b2(c>0),
由题意,以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x-c)2+y2=a2,
∴圆心到直线x+y+2$\sqrt{2}$-1=0的距离$d=\frac{|c+2\sqrt{2}-1|}{\sqrt{2}}=a$ ①,
∵椭圆C的两焦点与短轴的一个端点的连线构成等边三角形,
∴$b=\sqrt{3}c$,a=2c,代入①式得,$c=1,b=\sqrt{3},a=2$,
故所求椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)(i)设B(x1,y1),C(x2,y2),则D(-x1,-y1),
于是${k}_{1}{k}_{2}=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}•\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}=\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$=$\frac{\frac{3}{4}(4-{{x}_{2}}^{2})-\frac{3}{4}(4-{{x}_{1}}^{2})}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}=-\frac{3}{4}$;
(ii)由(i)知,${k}_{3}{k}_{4}={k}_{1}{k}_{2}=-\frac{3}{4}$,故${y}_{1}{y}_{2}=-\frac{3}{4}{x}_{1}{x}_{2}$.
∴$\frac{9}{16}{{x}_{1}}^{2}{{x}_{2}}^{2}={{y}_{1}}^{2}{{y}_{2}}^{2}=\frac{3}{4}(4-{{x}_{1}}^{2})(4-{{x}_{2}}^{2})$,
即${{x}_{1}}^{2}{{x}_{2}}^{2}=16-4({{x}_{1}}^{2}+{{x}_{2}}^{2})+{{x}_{1}}^{2}{{x}_{2}}^{2}$,
∴${{x}_{1}}^{2}+{{x}_{2}}^{2}=4$.
又$2=(\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3})+(\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3})$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{4}+\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{3}$,故${{y}_{1}}^{2}+{{y}_{2}}^{2}=3$.
∴OB2+OC2=${{x}_{1}}^{2}+{{y}_{1}}^{2}+{{x}_{2}}^{2}+{{y}_{2}}^{2}=7$.
点评 本题考查椭圆方程的求法,考查了直线与圆锥曲线位置关系的应用,体现了整体运算思想方法,考查化归与转化思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{55}{2}$ | B. | $\frac{55}{2}$ | C. | -55 | D. | 55 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com