1£®ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­Pn£¨an£¬bn£©£¬£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=£¨$\frac{1}{2}$£©xµÄͼÏóÉÏ£®
£¨1£©ÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©Éèan=n£¬£¨n¡ÊN+£©£¬¹ýµãPn£¬Pn+1µÄÖ±ÏßÓëÁ½×ø±êÖáËùΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪcn£¬ÊÔÇó×îСµÄʵÊýt£¬Ê¹cn¡Üt¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£»
£¨3£©¶Ô£¨2£©ÖеÄÊýÁÐ{an}£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈë3k-1¸ö3£¬µÃµ½Ò»¸öеÄÊýÁÐ{dn}£¬ÉèSnÊÇÊýÁÐ{dn}µÄǰnÏîºÍ£¬ÊÔ̽¾¿2016ÊÇ·ñÊÇÊýÁÐ{Sn}ÖеÄijһÏд³öÄã̽¾¿µÃµ½µÄ½áÂÛ²¢¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÍƵ¼³ö$\frac{{b}_{n+1}}{{b}_{n}}$=£¨$\frac{1}{2}$£©d£¬£¨³£Êý£©£¬ÓÉ´ËÄÜÖ¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨2£©Èôan=n£¬Ôò${b}_{n}=£¨\frac{1}{2}£©^{n}$£¬ÍƵ¼³öcn-cn+1£¾0£¬´Ó¶øÊýÁÐ{cn}ËænÔö´ó¶ø¼õС£¬½ø¶ø${c}_{n}¡Ü{c}_{1}=\frac{9}{8}$£®ÓÉ´ËÄÜÇó³ö×îСµÄʵÊýtµÄֵΪ$\frac{9}{8}$£¬Ê¹cn¡Üt¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£®
£¨3£©an=n£¬ÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹ£¬£¨º¬akÏµÄËùÓÐÏîµÄºÍÊÇ$\frac{k£¨k+1£©}{2}+\frac{{3}^{k}-3}{2}$£¬´Ó¶øÄÜÍÆµ¼³ö2016²»ÊÇÆäÖеÄÒ»Ï

½â´ð Ö¤Ã÷£º£¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÓÉÒÑÖªµÃ${b}_{n}=£¨\frac{1}{2}{£©^{{a}_{n}}}_{\;}$£¬
¡à$\frac{{b}_{n+1}}{{b}_{n}}$=£¨$\frac{1}{2}$£©${\;}^{{a}_{n+1}-{a}_{n}}$=£¨$\frac{1}{2}$£©d£¬£¨³£Êý£©£¬
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
½â£º£¨2£©Èôan=n£¬Ôò${b}_{n}=£¨\frac{1}{2}£©^{n}$£¬
¡à${P}_{n}£¨n£¬£¨\frac{1}{2}£©^{n}£©$£¬Pn+1£¨n+1£¬£¨$\frac{1}{2}$£©n+1£©£¬${k}_{{P}_{n}{P}_{n+1}}$=$\frac{£¨\frac{1}{2}£©^{n+1}-£¨\frac{1}{2}£©^{n}}{£¨n+1£©-n}$=-£¨$\frac{1}{2}$£©n+1£¬
Ö±ÏßPnPn+1µÄ·½³ÌΪ$y-£¨\frac{1}{2}£©^{n}=-£¨\frac{1}{2}£©^{n+1}£¨x-n£©$£¬
ËüÓëxÖᣬyÖá·Ö±ð½»ÓÚµãAn£¨n+2£¬0£©£¬Bn£¨0£¬$\frac{n+2}{{2}^{n+1}}$£©£¬
¡àcn=$\frac{1}{2}•|O{A}_{n}|•$|OBn|=$\frac{£¨n+2£©^{2}}{{2}^{n+2}}$£¬
cn-cn+1=$\frac{£¨n+2£©^{2}}{{2}^{n+2}}-\frac{£¨n+3£©^{2}}{{2}^{n+3}}$=$\frac{{n}^{2}+2n-1}{{2}^{n+3}}$£¾0£¬
¡àÊýÁÐ{cn}ËænÔö´ó¶ø¼õС£¬
¡à${c}_{n}¡Ü{c}_{1}=\frac{9}{8}$£®
¡à×îСµÄʵÊýtµÄֵΪ$\frac{9}{8}$£¬Ê¹cn¡Üt¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£®
£¨3£©2016²»ÊÇÊýÁÐ{Sn}ÖеÄijһÏ֤Ã÷ÈçÏ£º
¡ßan=n£¬¡àÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹ£¬£¨º¬akÏµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+¡­k£©+£¨31+32+¡­+3k-1£©=$\frac{k£¨k+1£©}{2}+\frac{{3}^{k}-3}{2}$£¬
µ±k=7ʱ£¬ÆäºÍΪ£º28+$\frac{{3}^{7}-3}{2}$=1120£¼2016£¬
¶øµ±k=8ʱ£¬ÆäºÍÊÇ36+$\frac{{3}^{8}-3}{2}$=3315£¾2016£¬
¡ß2016-1120=896=298¡Á3+2£¬²»ÊÇ3µÄ±¶Êý£¬
¡à²»´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2016£®
¡à2016²»ÊÇÊýÁÐ{Sn}ÖеÄijһÏ

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éÂú×ãÌõ¼þµÄʵÊýµÄ×îСֵµÄÇ󷨣¬¿¼²é2016ÊÇ·ñÊÇÊýÁÐÖеÄijһÏîµÄ̽¾¿ÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ±ÈÊýÁÐÐÔÖÊ¡¢×÷²î·¨¡¢ÊýÁÐÇóºÍµÈ֪ʶµãµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÅжϺ¯Êýf£¨x£©=cosx-xµÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªtan¦Á=3£¬Ôò$\frac{2sin¦Á-cos¦Á}{2sin¦Á+cos¦Á}$µÄÖµÊÇ$\frac{5}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ða£¬b£¬c£®a-2b+c=0£¬3a+b-2c=0£¬ÇósinA£ºsinB£ºsinC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚ¡÷ABCÖУ¬¸ßAD°ÑBC·ÖΪ³¤2cmºÍ3cmµÄÁ½¶Î£¬¡ÏA=45¡ã£¬ÔòS¡÷ABC=15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªOÎª×ø±êÔ­µã£¬P£¨x£¬y£©Îªº¯Êýy=1+lnxͼÏóÉÏÒ»µã£¬¼ÇÖ±ÏßOPµÄбÂÊk=f£¨x£©£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä$£¨m£¬m+\frac{1}{2}£©£¨m£¾0£©$ÉÏ´æÔÚ¼«Öµ£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©?x¡Ê[1£¬+¡Þ£©£¬Ê¹$f£¨x£©¡Ü\frac{t}{x+1}$£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½½¹µãÓë¶ÌÖáµÄÒ»¸ö¶ËµãµÄÁ¬Ïß¹¹³ÉµÈ±ßÈý½ÇÐΣ¬Ö±Ïßx+y+2$\sqrt{2}$-1=0ÓëÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬ÍÖÔ²µÄ³¤°ëÖáΪ°ë¾¶µÄÔ²ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãB£¬C£¬DÊÇÍÖÔ²Éϲ»Í¬ÓÚÍÖÔ²¶¥µãµÄÈýµã£¬µãBÓëµãD¹ØÓÚÔ­µãO¶Ô³Æ£¬ÉèÖ±ÏßCD£¬CB£¬OB£¬OCµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬k4£¬ÇÒk1k2=k3k4£®
£¨i£©Çók1k2µÄÖµ£»
£¨ii£©ÇóOB2+OC2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª¼¯ºÏP={x|-x2+2x¡Ü0}£¬Q={x|1£¼x¡Ü3}£¬Ôò£¨∁RP£©¡ÉQµÈÓÚ£¨¡¡¡¡£©
A£®[1£¬3]B£®£¨2£¬3]C£®£¨1£¬2£©D£®[1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éèµã£¨x£¬y£©Âú×ãy¡Ý|x|ÇÒy¡Ü-|x|+2£¬Ôòz=6x-yµÄ×î´óֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸