精英家教网 > 高中数学 > 题目详情
13.设数列{an},(n≥1,n∈N)满足a1=2,a2=6,且(an+2-an+1)-(an+1-an)=2,若[x]表示不超过x的最大整数,则[$\frac{2016}{{a}_{1}}$+$\frac{2016}{{a}_{2}}$+…+$\frac{2016}{{a}_{2016}}$]=2015.

分析 构造bn=an+1-an,可判数列{bn}是4为首项2为公差的等差数列,累加法可得an=n(n+1),裂项相消法可得答案.

解答 解:构造bn=an+1-an,则b1=a2-a1=4,
由题意可得(an+2-an+1)-(an+1-an)=bn+1-bn=2,
故数列{bn}是4为首项2为公差的等差数列,
故bn=an+1-an=4+2(n-1)=2n+2,
故a2-a1=4,a3-a2=6,a4-a3=8,…,an-an-1=2n,
以上n-1个式子相加可得an-a1=$\frac{(n-1)(4+2n)}{2}$,解得an=n(n+1),
故$\frac{2016}{{a}_{1}}$+$\frac{2016}{{a}_{2}}$+…+$\frac{2016}{{a}_{2016}}$=2016($\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2016×2017}$)
=2016(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$)=2016-$\frac{2016}{2017}$,
∴[$\frac{2016}{{a}_{1}}$+$\frac{2016}{{a}_{2}}$+…+$\frac{2016}{{a}_{2016}}$]=2015,
故答案为:2015.

点评 本题考查等差数列的通项公式,涉及等差数列的判定和累加法以及裂项相消法求和,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知双曲线C为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),其左右顶点分别为A、B,曲线上一点P,kPA、kPB分别为直线PA、PB的斜率,且kPA•kPB=3,过左焦点的直线l与双曲线交于两点M,N,|MN|的最小值为4,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1B.$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1
C.$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1和$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1或$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{5π}{6}$)的值为(  )
A.$-\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tanα=3,则$\frac{2sinα-cosα}{2sinα+cosα}$的值是$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,|$\overrightarrow{CA}$|=$\sqrt{6}$,|$\overrightarrow{CB}$|=2,∠ACB=75°.
(1)求|$\overrightarrow{AB}$|的值;
(2)若$\overrightarrow{AD}$=$\sqrt{3}$$\overrightarrow{DB}$,求证:$\overrightarrow{CD}$⊥$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C所对的边分别a,b,c.a-2b+c=0,3a+b-2c=0,求sinA:sinB:sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,高AD把BC分为长2cm和3cm的两段,∠A=45°,则S△ABC=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2$\sqrt{2}$-1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4
(i)求k1k2的值;
(ii)求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程x2+y2=k-6表示一个圆,则k的取值范围是k>6.

查看答案和解析>>

同步练习册答案