精英家教网 > 高中数学 > 题目详情
设向量=(x+1,y),=(y,x-1),(x,y∈R)满足||+||=2,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.
【答案】分析:(1)由||+||=2,知,由此能求出动点P(x,y)的轨迹C的方程.
(2)点A(1,0)和B(-1,0)为C的两个焦点,连接BM,BN,由椭圆的对称性可知四边形AMBN是平行四边形,所以∠AMB=π-∠MAN=,设MA=r1,MB=r2,由椭圆定义知r12+r22+2r1r2=8.在△AMB中,由余弦定理知,所以,由此得=
(3)设动点D(2,y),则以OD为直径的圆的方程为x(x-2)+y(y-y)=0,直线GA:2x+yy-2=0,由此得G的轨迹方程是x2+y2=2,从而得到OG=(定值).
解答:解:(1)∵=(x+1,y),=(y,x-1),(x,y∈R)满足||+||=2

∴动点P(x,y)的轨迹C的方程是以(±1,0)为焦点,以长轴长为2,短轴长为2的椭圆,
∴动点P(x,y)的轨迹C的方程为
(2)∵点A(1,0)和B(-1,0)为C的两个焦点,连接BM,BN,
由椭圆的对称性可知四边形AMBN是平行四边形,
∴∠AMB=π-∠MAN=
设MA=r1,MB=r2
由椭圆定义知,即r12+r22+2r1r2=8,
在△AMB中,由余弦定理知
两式作差,得
=
(3)设动点D(2,y),
则以OD为直径的圆的方程为x(x-2)+y(y-y)=0,①
直线GA:2x+yy-2=0,②
由①②联立消去y得G的轨迹方程是x2+y2=2,
∴OG=(定值)
点评:本题考查圆与圆锥曲线的综合应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用圆锥曲线的性质进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量i、j为直角坐标系的x轴、y轴正方向上的单位向量,若向量
a
=(x+1)i+yj,
b
=(x-1)i+yj,且|
a
|-|
b
|=1,则满足上述条件的点P(x,y)的轨迹方程是(  )
A、
x2
1
4
-
y2
3
4
=1(y≥0)
B、
x2
1
4
-
y2
3
4
=1(x≥0)
C、
y2
1
4
-
x2
3
4
=1(y≥0)
D、
y2
1
4
-
x2
3
4
=1(x≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(x+1,y),
b
=(x-1,y)
,点P(x,y)为动点,已知|
a
|+|
b
|=4

(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)设向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,满足|
s
|+|
t
 |=2
2
,已知两定点A(1,0),B(-1,0),动点P(x,y),
(1)求动点P(x,y)的轨迹C的方程;
(2)已知直线m:y=x+t交轨迹C于两点M,N,(A,B在直线MN两侧),求四边形MANB的面积的最大值.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),求证:线段OG的长为定值.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.

查看答案和解析>>

同步练习册答案