分析 设设左焦点为F,右焦点为F′,再设|AF|=x,|AF′|=y,利用椭圆的定义,四边形AFBF′为矩形,可求出x,y的值,进而可得双曲线的几何量,即可求出双曲线的离心率.
解答 解:如图,
设左焦点为F,右焦点为F′,
再设|AF|=x,|AF′|=y,
∵点A为椭圆C1:$\frac{{x}^{2}}{4}$+y2=1上的点,2a=4,b=1,c=$\sqrt{3}$;
∴|AF|+|AF′|=2a=4,即x+y=4;①
又四边形AFBF′为矩形,
∴|AF|2+|AF′|2=|FF′|2,
即x2+y2=(2c)2=12,②
联立①②得$\left\{\begin{array}{l}{x+y=4}\\{{x}^{2}+{y}^{2}=12}\end{array}\right.$,解得x=2-$\sqrt{2}$,y=2+$\sqrt{2}$,
设双曲线C2的实轴长为2a′,焦距为2c′,
则2a′=|AF′|-|AF|=y-x=2$\sqrt{2}$,2c′=2$\sqrt{3}$,
∴C2的离心率是e=$\frac{c′}{a′}$=$\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.
点评 本题考查椭圆与双曲线的简单性质,求得|AF|与|AF′|是关键,考查分析与运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x≤2} | B. | {x|x≥2} | C. | {x|0≤x≤2} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
| C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com