精英家教网 > 高中数学 > 题目详情

【题目】13个人坐在有八个座位的一排椅子上,若每个人的左右两边都要有空位,则不同坐法的种数为多少?

2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?

【答案】124;(284

【解析】

1)根据题意,使用插空法,把3个人看成是坐在座位上的人,往5个空座的空档插,由组合知识,分析可得答案;

2)分析题意,可将原问题转化为10个元素之间有9个间隔,要求分成7份,每份不空,使用插空法,相当于用6块档板插在9个间隔中,计算可得答案.

解:(1)由题意知有5个座位都是空的,

我们把3个人看成是坐在座位上的人,往5个空座的空档插,

由于这5个空座位之间共有4个空,3个人去插,

共有(种

2)根据题意,将10个名额,分配给7所学校,每校至少有1个名额,

可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;

相当于用6块档板插在9个间隔中,

共有种不同方法.

所以名额分配的方法共有84种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,合肥一中积极开展美丽校园建设,现拟在边长为0.6千米的正方形地块上划出一片三角形地块建设小型生态园,点分别在边上.

(1)当点分别时边中点和靠近的三等分点时,求的余弦值;

(2)实地勘察后发现,由于地形等原因,的周长必须为1.2千米,请研究是否为定值,若是,求此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,双曲线上有两点满足,且点到直线的距离为,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数kk0k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣30),B30),动点M满足2,则动点M的轨迹方程为()

A. x52+y216B. x2+y529

C. x+52+y216D. x2+y+529

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Mxy)满足

1)求点M的轨迹E的方程;

2)设过点N(﹣10)的直线l与曲线E交于AB两点,若OAB的面积为O为坐标原点).求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立

I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;

II)设,求数列的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个二次函数y=f(x)的图象

(1)写出这个二次函数的零点

(2)求这个二次函数的解析式

(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,则实数c的取值范围是(  )

A.(0,1]B.[1,+∞)

C.(0,1)D.(1,+∞)

查看答案和解析>>

同步练习册答案