【题目】已知椭圆
:
的一个焦点为
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程与离心率;
(Ⅱ)设椭圆
上不与
点重合的两点
,
关于原点
对称,直线
,
分别交
轴于
,
两点.求证:以
为直径的圆被
轴截得的弦长是定值.
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马
中,侧棱
底面
,且
,过棱
的中点
,作
交
于点
,连接![]()
![]()
(Ⅰ)证明:
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面
与面
所成二面角的大小为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
:
,半径为2的圆
与
相切,圆心
在
轴上且在直线
的右上方.
![]()
(1)求圆
的方程;
(2)过点
的直线与圆
交于
,
两点(
在
轴上方),问在
轴正半轴上是否存在定点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.
![]()
(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;
(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
![]()
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列
列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2
,n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的半径为2,圆心在
轴的正半轴上,且与直线
相切.
(1)求圆
的方程。
(2)在圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且△
的面积最大?若存在,求出点
的坐标及对应的△
的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;
(2)求过点P(-1,3),并且在两坐标轴上的截距相等的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知
=(cosx+sinx,sinx),
=(cosx-sinx,2cosx),
(Ⅰ)求证:向量
与向量
不可能平行;(Ⅱ)若f(x)=
·,且x∈
时,求函数f(x)的最大值及最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com