精英家教网 > 高中数学 > 题目详情
1.椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的右焦点为F,右准线为l,椭圆右顶点B到l的距离为d,则$\frac{BF}{d}$的值为$\frac{2}{3}$.

分析 确定椭圆右顶点B(3,0),右焦点为F(2,0),右准线为l:x=$\frac{9}{2}$,即可求出$\frac{BF}{d}$的值.

解答 解:椭圆右顶点B(3,0),右焦点为F(2,0),右准线为l:x=$\frac{9}{2}$,
∴BF=1,d=$\frac{2}{3}$,
∴$\frac{BF}{d}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-5,-4]上是减函数,α、β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在一项吃零食与性别的调查中,运用2×2列联表进行独立性检验得到K2≈2.521,那么判断吃零食和性别有关的这种判断的出错率为(  )
A.1%B.99%C.15%D.90%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=$\frac{3}{2}{n^2$+$\frac{1}{2}n$,递增的等比数列{bn}满足b1+b4=18,b2b3=32,
(1)求an,bn的通项公式;
(2)设cn=anbn,n∈N*,求数列cn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,若a15=10,a47=90,则a2+a4+…+a60=1500.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤$\sqrt{3}$,则e的取值范围为[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1an-2an+1+1=0,n∈N*
(1)求证:数列{$\frac{1}{{{a_n}-1}}$}是等差数列;
(2)求证:$\frac{n^2}{n+1}$<$\frac{a_1}{a_2}$+$\frac{a_2}{a_3}$+$\frac{a_3}{a_4}$+…+$\frac{a_n}{{{a_{n+1}}}}$<n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过椭圆9x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F2构成的三角形ABF2的周长是(  )
A.$\frac{4}{3}$B.4C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动点M到点F(0,1)的距离等于点M到直线y=-1的距离,点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设P为直线l:x-y-2=0上的点,过点P作曲线C的两条切线PA,PB,
(ⅰ)当点P($\frac{1}{2}$,-$\frac{3}{2}$)时,求直线AB的方程;
(ⅱ)当点P(x0,y0)在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

同步练习册答案