分析 (I)利用正弦定理、和差公式、三角函数的单调性即可得出.
( II)${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc=\frac{{25\sqrt{3}}}{4}$,可得bc=25,利用余弦定理可得:b2+c2=50,可得b+c=10.
(法一)由①②可知b,c可看成方程x2-10x+25=0的两根,解得b=c=5,即可得出.
(法二)利用正弦定理即可得出.
解答 解:( I)由2bcosA=acosC+ccosA及正弦定理可得2sinBcosA=sinAcosC+sinCcosA,
即2sinBcosA=sin(A+C),
∵sin(A+C)=sin(π-B)=sinB,∴2sinBcosA=sinB,即sinB(2cosA-1)=0,
∵0<B<π,∴sinB≠0,∴$cosA=\frac{1}{2}$,∵0<A<π,$A=\frac{π}{3}$.
( II)∵${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc=\frac{{25\sqrt{3}}}{4}$,∴bc=25①
∵$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{b^2}+{c^2}-25}}{2•25}=\frac{1}{2}$,b2+c2=50,
∴(b+c)2=50+2•25=100,即b+c=10②
(法一)由①②可知b,c可看成方程x2-10x+25=0的两根,解得b=c=5,
∴△ABC为等边三角形,故$sinB+sinC=\frac{{\sqrt{3}}}{2}+\frac{{\sqrt{3}}}{2}=\sqrt{3}$.
(法二)利用正弦定理可得:$sinB+sinC=b•\frac{sinA}{a}+c\frac{sinA}{a}=({b+c})\frac{sinA}{a}=10•\frac{{\frac{{\sqrt{3}}}{2}}}{5}=\sqrt{3}$.
点评 本题考查了正弦定理余弦定理、和差公式、三角函数的单调性、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com