精英家教网 > 高中数学 > 题目详情
18.函数y=$\frac{sinx}{x}$的导数为$\frac{xcosx-sinx}{{x}^{2}}$.

分析 根据函数的导数公式进行求导即可.

解答 解:函数的导数y′=$\frac{(sinx)′x-sinx•(x)′}{{x}^{2}}$=$\frac{xcosx-sinx}{{x}^{2}}$,
故答案为:$\frac{xcosx-sinx}{{x}^{2}}$

点评 本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列四个图中,函数y=$\frac{ln|x+1|}{x+1}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位:名
总计
看营养说明50y80
不看营养说明x2030
总计6050z
(1)根据以上表格,写出x,y,z的值.
(2)根据以上列联表,是否有99%以上的把握认为“性别与在购买食物时看营养说明”有关?参考信息如下:
p(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知F1、F2分别是双曲线x2-4y2=4的左、右焦点,点P在该双曲线的右支上,且|PF1|+|PF2|=6,则cos∠F1PF2=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定点A(-5,0),B(5,4),点P为双曲线$C:\frac{x^2}{16}-\frac{y^2}{9}=1$右支上任意一点,则|PB|-|PA|的最大值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)${8^{-\frac{1}{3}}}-{(-\frac{5}{9})^0}+{[{(-2)^3}]^{\frac{2}{3}}}$
(2)$\frac{1}{2}lg25+lg2-lg\sqrt{0.1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\root{3}{{{{(-4)}^3}}}+{(-\frac{1}{8})^{-\frac{4}{3}}}+{(lg2)^2}+lg5•lg20$=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$f(x)=\left\{\begin{array}{l}{x^2}+({a+b})x+2,x≤0\\ 2,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0\end{array}\right.$,其中a是方程x+lgx=4的解,b是方程x+10x=4的解,如果关于x的方程f(x)=x的所有解分别为x1,x2,…,xn,记$\sum_{i=1}^n{{x_i}={x_1}+{x_2}+…+{x_n}}$,则$\sum_{i=1}^n{x_i}$=-1.

查看答案和解析>>

同步练习册答案