精英家教网 > 高中数学 > 题目详情
8.已知$f(x)=\left\{\begin{array}{l}{x^2}+({a+b})x+2,x≤0\\ 2,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0\end{array}\right.$,其中a是方程x+lgx=4的解,b是方程x+10x=4的解,如果关于x的方程f(x)=x的所有解分别为x1,x2,…,xn,记$\sum_{i=1}^n{{x_i}={x_1}+{x_2}+…+{x_n}}$,则$\sum_{i=1}^n{x_i}$=-1.

分析 先根据a满足x+lgx=4,b满足x+10x=4,可得a+b=4,进而可分类求出关于x的方程f(x)=x的解,再求其和即可.

解答 解:∵a满足x+lgx=4,b满足x+10x=4,
∴a,b分别为函数y=4-x与函数y=lgx,y=10x图象交点的横坐标,
由于y=x与y=4-x图象交点的横坐标为2,
函数y=lgx,y=10x的图象关于y=x对称,
∴a+b=4,
∴函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2,x≤0}\\{2,x>0}\end{array}\right.$,
当x≤0时,关于x的方程f(x)=x,即x2+4x+2=x,即x2+3x+2=0,
∴x=-2或x=-1,满足题意;
当x>0时,关于x的方程f(x)=x,即x=2,满足题意.
∴$\sum_{i=1}^n{x_i}$=-2-1+2=-1,
故答为:-1

点评 本题考查函数与方程的关系,考查根的个数的研究,解题的关键是求出分段函数的解析式,有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{sinx}{x}$的导数为$\frac{xcosx-sinx}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{4}{3}$x,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{3}$ 或$\frac{5}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从1200人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,1200,分组后在第一组采用简单随机抽样的方法抽到的号码为28,抽到的40人中,编号落在区间[1,300]的人做试卷A,编号落在[301,760]的人做试卷B,其余的人做试卷C,则做试卷C的人数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f-1(x)为f(x)=3x-1+x-1,x∈[0,1]的反函数,则y=f(x)+f-1(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1,设f(x)=$\frac{g(x)}{x}$.
(1)求a、b的值;
(2)若不等式f(lgx)-klgx≥0在$x∈[\sqrt{10},100]$上有解,求实数k的取值范围;
(3)若f(|2x-1|)+k•$\frac{2}{{|{{2^x}-1}|}}$-3k=0有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=(a2-1)x2+(a-1)x+3(x∈R),写出y>0的充要条件a≥1或a<-$\frac{13}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某学校数学兴趣班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.中心在原点,焦点在x轴上,焦距等于12,离心率等于$\frac{3}{5}$,则此椭圆的方程是(  )
A.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1B.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案