分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{{\begin{array}{l}{x-2y+1≥0}\\{2x-y-1≤0}\\{4x+2y+1≤0}\\{{x^2}+{y^2}≤1}\end{array}}\right.$作出可行域如图,令z=3x+y,![]()
联立$\left\{\begin{array}{l}{4x+2y+1=0}\\{2x-y-1=0}\end{array}\right.$,解得A($\frac{1}{8}$,-$\frac{3}{4}$)此时z取得最大值,z=$-\frac{3}{8}$.
目标函数与圆相切,可得d=$\frac{|-z|}{\sqrt{9+1}}$=1,解得z=$±\sqrt{10}$,
由图象可知,z$≥-\sqrt{10}$,
∴3x+y的取值范围是[-$\sqrt{10}$,$-\frac{3}{8}$].
故答案为:[-$\sqrt{10}$,$-\frac{3}{8}$].
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抽签法 | B. | 系统抽样 | C. | 分层抽样 | D. | 随机数表法 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2:3 | B. | 2:5 | C. | 4:9 | D. | 4:25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{2,\frac{5}{2}}]$ | B. | $[{\frac{5}{4},\frac{5}{2}}]$ | C. | $[{\frac{4}{5},\frac{5}{2}}]$ | D. | $[{\frac{5}{4},2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com