精英家教网 > 高中数学 > 题目详情
过椭=1的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,求弦AB的长_______

试题分析:直线为,直线与椭圆联立可求得
点评:本题中交点坐标容易计算,因此算出坐标求距离
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分) 如图,是离心率为的椭圆,
()的左、右焦点,直线将线段分成两段,其长度之比为1 : 3.设上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的
横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线4x2-y2=1的两条渐近线与直线围成的三角形区域(包括边界)为E, P(x, y)为该区域内的一动点,则目标函数z=x-2y的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)过直角坐标平面中的抛物线,直线过焦点且与抛物线相交于两点.
⑴当直线的倾斜角为时,用表示的长度;
⑵当且三角形的面积为4时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,双曲线的离心率为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上一点到焦点的距离为1,则点的纵坐标是  (    )
A.0B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距是(  )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线 的离心率为 ,且它的一条准线与抛物
线 的准线重合,则此双曲线的方程是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案