【题目】如图,在三棱锥
中,
平面
,
为棱
上的一点,且
平面
.
![]()
(1)证明:
;
(2)设
.
与平面
所成的角为
.求二面角
的大小.
科目:高中数学 来源: 题型:
【题目】2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5人中任选2人定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程和直线
的普通方程;
(Ⅱ)若直线
与曲线
相交于
,
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:
![]()
(Ⅰ)求百度外卖公司的“骑手”一日工资
(单位:元)与送餐单数
的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为
(单位:元),求
的分布列和数学期望;
②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,且点
在椭圆
上.
⑴求椭圆
的标准方程;
⑵已知动直线
过点
且与椭圆
交于
两点.试问
轴上是否存在定点
,使得
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
的左顶点为
,左焦点为
,及点
,且
、
、
成等比数列.
(1)求椭圆
的方程;
(2)斜率不为
的动直线
过点
且与椭圆
相交于
、
两点,记
,线段
上的点
满足
,试求
(
为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新型冠状病毒疫情期间,商业活动受到很大影响某小型零售连锁店总部统计了本地区50家加盟店2月份的零售情况,统计数据如图所示.据估计,平均销售收入比去年同期下降40%,则去年2月份这50家加盟店的平均销售收入约为( )
![]()
A.6.6万元B.3.96万元C.9.9万元D.7.92万元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com