精英家教网 > 高中数学 > 题目详情

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

【答案】1;(2

【解析】

1)由题意可得出关于的方程组,可求出的值,进而可求得的值,由此可得出椭圆的方程;

2)解法一:设点,将点的坐标代入椭圆的方程,变形后相减可得,再由,经过向量的坐标运算求得,由点在椭圆内得到,再由三角形的面积公式可求得面积的取值范围;

解法二:设点,由,根据向量的坐标运算得出,设直线的方程为,与椭圆的方程联立,由得出的取值范围,由代入韦达定理并消去,得出,进而得出,再由三角形的面积公式可求得面积的取值范围;

解法三:设直线的方程为,与椭圆的方程联立,由得出的取值范围,并列出韦达定理,利用向量的线性运算可得出,并求出原点到直线的距离,利用三角形的面积公式可求得面积的取值范围.

1)依题意,解得

所以椭圆的方程是

2)解法一:

,则

相减得:

又由,知

,知

代入式得:,即

又因为点在椭圆内,所以

所以的面积

解法二:设,则

设直线的方程为,代入椭圆的方程得:

,由

所以,消去得到

所以

因此的面积

解法三:设直线的方程为,代入椭圆的方程得:

,由

所以

原点到直线的距离

所以的面积

因为,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成六组,得到如下频率分布直方图.

1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.

1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为,求的分布列和数学期望;

2)试验后发现乙种鱼苗较好,扶贫工作组决定购买尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=AC=BC=AA1=2OM分别为BCAA1的中点.

1)求证:OM∥平面CB1A1

2)求点M到平面CB1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱的底面边长为2,侧棱长为4,过点作平面与正四棱柱的三条侧棱分别交于,且,若多面体和多面体的体积比为35,则截面的周长为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”…江南梅雨的点点滴滴都流露着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南20092018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

1)计算的值,并用样本平均数估计镇明年梅雨季节的降雨量;

2镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅这10年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你完善列联表,帮助老李排解忧愁,试想来年应种植哪个品种的杨梅受降雨量影响更小?并说明理由.

亩产量\降雨量

200400之间

200400之外

合计

2

1

合计

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线与直线垂直,求实数a的值;

2)若函数上单调递增,求实数a的取值范围;

3)当时,若方程有两个相异实根,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对时下的抖音热某校团委对学生性别和喜欢抖音是否有关作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人

附表:

0.050

0.010

3.841

6.635

附:

A.20B.40C.60D.80

查看答案和解析>>

同步练习册答案