精英家教网 > 高中数学 > 题目详情
17.已知i为虚数单位,则复数$Z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$的虚部为(  )
A.1B.-1C.iD.-i

分析 利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.

解答 解:复数$Z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$=$\frac{-i(i+\sqrt{3})}{\sqrt{3}+i}$=-i,其虚部为-1.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,AB∥CD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.
求证:(1)PA⊥底面ABCD;(2)平面BEF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正项等比数列{an}的前n项和为Sn,已知S4-S1=7a2,a3=5,则Sn=(  )
A.$\frac{5}{2}({2}^{n}-1)$B.$\frac{5}{18}({3}^{n}-1)$C.$5•{2}^{n-1}-\frac{5}{4}$D.$5•{2}^{n-2}-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f′(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在空间四边形ABCD中,AB⊥CD,BC⊥AD,AC与BD的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则关于函数f(x)的性质的结论正确的有①②③④(填序号)
①f(x)的图象关于点(-$\frac{1}{6}$,0)对称;
②f(x)的图象关于直线x=$\frac{4}{3}$对称;
③f(x)在[-$\frac{1}{2},\frac{1}{3}$]上为增函数;
④把f(x)的图象向右平移$\frac{2}{3}$个单位长度,得到一个偶函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的正视图,侧视图为边长为2的正方形,其全面积为(  )
A.B.$8\sqrt{2}$πC.$4+4\sqrt{2}$πD.$8+4\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.近年来,某地区为促进本地区发展,通过不断整合地区资源、优化投资环境、提供投资政策扶持等措施,吸引外来投资,效果明显.该地区引进外来资金情况如表:
年份20122013201420152016
时间代号t12345
外来资金y(百亿元)567810
(Ⅰ)求y关于t的回归直线方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求回归直线方程预测该地区2017年(t=6)引进外来资金情况.
参考公式:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$t.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图:
(Ⅰ)写出a的值;
(Ⅱ)求在抽取的40名学生中月上网次数不少于15次的学生人数;
(Ⅲ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人,求至少抽到1名女生的概率.

查看答案和解析>>

同步练习册答案