精英家教网 > 高中数学 > 题目详情
12.在空间四边形ABCD中,AB⊥CD,BC⊥AD,AC与BD的位置关系是垂直.

分析 作BP垂直于平面ADC,P是垂足,连接CP,DP,AP,CP,DP,AP分别是BC,BD,AB在平面ABC内的射影,由BC⊥AD,AB⊥CD,知点P是△ADC的垂心.故DP垂直于AC.由三垂线定理,知BD⊥AC.

解答 解:作BP垂直于平面ADC,P是垂足,连接CP,DP,AP,
CP,DP,BP分别是BC,BD,AB在平面ACD内的射影,
∵BC⊥AD,
∴由三垂线定理的逆定理知AD⊥CP.
∵AB⊥CD,
∴由三垂线定理的逆定理知CD⊥AP,
∴点P是△ADC的垂心.
∴DP垂直于AC.
由三垂线定理,知BD⊥AC.
故答案为:垂直.

点评 本题考查空间中直线与直线之间的位置关系,是基础题.解题时要认真审题,仔细解答,注意三垂线定理及其逆定理的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.“a+b=0“是“|a|=|b|“的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正数数列{an}满足:Sn=n2+2n-2,其中Sn为数列{an}的前n项和.
(1)求数列{an}的通项an; 
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$.
(Ⅰ)求f(x)在点(0,f(0))处的切线方程;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的左,右焦点坐标分别为(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,若P为椭圆C上的一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点.点(1,$\frac{3}{2}$)在椭圆C上.
(1)求椭圆C短轴长;
(2)求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i为虚数单位,则复数$Z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个正三棱柱的主视图如图所示,则其左视图的面积(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x,y均为非零实数,且满足$\frac{xsin\frac{π}{5}+ycos\frac{π}{5}}{xcos\frac{π}{5}-ysin\frac{π}{5}}$=tan$\frac{9π}{20}$.
(1)求$\frac{y}{x}$的值;
(2)在△ABC中,若tanC=$\frac{y}{x}$,求sin2A+2cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tanα<0,则(  )
A.sinα<0B.sin2α<0C.cosα<0D.cos2α<0

查看答案和解析>>

同步练习册答案